Instituto Federal Sul- rio-grandense – Campus Sapucaia do Sul

Pró-reitoria de Ensino

Curso: Curso Superior Engenharia Mecânica Turmas: 4E

PLANO DE ENSINO

Disciplina: Termodinâmica

Ano/Semestre: 2017 – 1º semestre

Professor(a): Enio César Machado Fagundes

Carga horária Semanal: 4 horas aula

Carga horária Total: 60 horas

Ementa:

Conceitos introdutórios e definições. Energia e a 1ª Lei da Termodinâmica. Avaliando propriedades. Análise de Volume de Controle usando a Energia. 2ª Lei da Termodinâmica. Entropia. Sistemas de Potência a Vapor. Sistema de Potência a gás. Sistemas de Refrigeração e bombas de calor. Misturas de gases ideais e aplicações a Psicrometria.

Objetivo(s):

Compreender os fenômenos físicos da termodinâmica aplicados à engenharia e áreas tecnológicas.

Conteúdos:

UNIDADE I – Conceitos Introdutórios e Definições

- 1.1 Uso da Termodinâmica
- 1.2 Sistemas Termodinâmicos e unidades
- 1.3 Conceitos de volume específico, pressão e temperatura

UNIDADE II – Energia e a 1ª Lei da Termodinâmica

- 2.1 Energia
- 2.2 Trabalho
- 2.3 Calor
- 2.4 Balanço de energia para sistemas fechados
- 2.5 Análise de energia de ciclos

UNIDADE III – Avaliando Propriedades

- 3.1 Relação p-v-t
- 3.2 Mudança de fase
- 3.3 Propriedades termodinâmicas
- 3.4 Avaliando pressão, volume específico e temperatura
- 3.5 Energia interna e Entalpia
- 3.6 Calor específico Cv e Cp
- 3.7 Modelo de Gás Ideal

UNIDADE IV - Análise de Volume de Controle Usando a Energia

- 4.1 Conservação da massa para um volume de controle
- 4.2 Conservação da energia para um volume de controle
- 4.3 Análise em volume de controle em regime estacionário
- 4.4 Bocal e difusor
- 4.5 Turbinas
- 4.6 Compressores e bombas
- 4.7 Trocadores de calor
- 4.8 Dispositivos de estrangulamento
- 4.9 Integração de sistemas

UNIDADE V - Segunda Lei da Termodinâmica

5.1 Declarações da 2ª Lei da Termodinâmica

Instituto Federal Sul- rio-grandense – Campus Sapucaia do Sul

Pró-reitoria de Ensino

Curso: Curso Superior Engenharia Mecânica Turmas: 4E

- 5.2 Irreversibilidade
- 5.3 2ª Lei da Termodinâmica para ciclos
- 5.4 Ciclo de Carnot
- 5.5 Desigualdade de Clausius

UNIDADE VI - Entropia

- 6.1 Entropia: propriedade de um sistema
- 6.2 Entropia em diversas aplicações
- 6.2 Processo isoentrópico

UNIDADE VII - Sistemas de Potência a Vapor

7.1 O ciclo de Rankine

UNIDADE VIII - Sistemas de Potência a Gás

- 8.1 Motores de combustão interna
- 8.1.1 Terminologia de motores
- 8.1.2 Ciclo de ar-padrão Otto
- 8.1.3 Ciclo de ar-padrão Diesel

UNIDADE IX - Sistemas de Refrigeração e de Bombas de Calor

- 9.1 Sistemas de refrigeração a vapor
- 9.2 Análise dos sistemas de refrigeração por compressão de vapor
- 9.3 Propriedades dos refrigerantes
- 9.4 Refrigeração por absorção
- 9.4 Sistemas de Bombas de calor
- 9.5 Sistemas de Refrigeração a gás

UNIDADE X - Mistura de Gases Ideais e Aplicações à Psicrometria

- 10.1 Composições de misturas
- 10.2 Aplicações Psicrométricas

Estratégias de Ensino (metodologia):

O conteúdo desta disciplina será ministrado através de aula expositiva dialogada.

Recursos:

Projetor multimídia, quadro e giz.

Procedimentos e critérios de avaliação:

Os alunos(as) serão avaliados através de três verificações com peso 10. Verificação 1: unidades III e IV. Verificação 2: unidade VI. Verificação 3: unidade VIII e IX. Trabalhos para a unidade VII e X com peso 2. A nota será calculada pela média ponderada.

Obs: as unidades I e VII não serão avaliadas nas verificações.

Média= (verif1 x 10 + verif2 x 10 + verif3 x 10 + trab1 x 2 + trab2 x 2) / 34.

O aluno que obtiver nota final igual ou superior a seis (6,0) será considerado aprovado. A reavaliação será dividida em duas avaliações no final do período. A primeira com os assuntos das unidades I a V. A segunda com assuntos das unidades VI a X. Os alunos poderão fazer as duas substituições, caso a nota obtida seja inferior a seis. A frequência nas aulas será cobrada de acordo com a organização didática.

Bibliografia:

Bibliografia básica:

MORAN, M. J.; SHAPIRO, H. N. **Princípios de Termodinâmica para Engenharia**. 6 ed. Rio de Janeiro: LTC, 2009. CENGEL, Y. A.; BOLES, M. A. **Termodinâmica**. 5 ed. São Paulo: McGraw-Hill, 2006.

Instituto Federal Sul- rio-grandense – Campus Sapucaia do Sul

Pró-reitoria de Ensino

Curso: Curso Superior Engenharia Mecânica Turmas: 4E

BORGNAKKE, C.; SONNTAG. R. E. Fundamentos da Termodinâmica. 7 ed. São Paulo: Blucher, 2009.

Bibliografia complementar:

VAN WYLEN, G.; SONNTAG, R.; BORGNAKKE, C. **Fundamentos da Termodinâmica Clássica**. 4 ed. São Paulo: Editora Edgard Blücher Ltda., 1995.

LUIZ, A. M. Termodinâmica - Teoria & Problemas. Rio de Janeiro: LTC, 2007.

POTTER, M. C.; SCOTT, E. P. Termodinâmica. São Paulo: Cengage Learning, 2006.

LEVENSPIEL, O. Termodinâmica amistosa para engenheiros. São Paulo: Editora Edgard Blücher Ltda., 2002.

BEJAN, A. Advanced Engineering Thermodynamics. Inc. 3 ed. New York: John Wiley & Sons, 2006.

Cronograma de aulas

Aula	Data	Conteúdo
1	14/2	Apresentação da disciplina, capítulo 1 – conceitos e definições.
2	20/2	Capítulo 1 – conceitos introdutórios e definições
3	21/2	Capítulo 1 – exercícios
	27/2	Feriado
	28/2	Feriado
4	6/3	Capitulo 2 – Energia e 1ª lei da termodinâmica
5	7/3	Capitulo 2 – Energia e 1ª lei da termodinâmica
6	13/3	Capitulo 2 – exercícios
7	14/3	Capitulo 3 – Avaliando propriedades
8	20/3	Capitulo 3 – Avaliando propriedades
9	21/3	Capitulo 3 – Avaliando propriedades
10	27/3	Capitulo 3 – Avaliando propriedades
11	28/3	Capitulo 3 – Avaliando propriedades
12	03/4	Capitulo 3 – Avaliando propriedades, exercícios
13	04/4	Capitulo 4 – Análise de volume de controle usando a energia
14	10/4	Capitulo 4 – Análise de volume de controle usando a energia
15	11/4	Capitulo 4 – Análise de volume de controle usando a energia
16	17/4	Capitulo 4 – Análise de volume de controle usando a energia
17	18/4	Capitulo 4 – exercícios
18	24/4	Verificação 1 - capítulos III e IV
19	25/4	Capitulo 5 – Segunda lei da termodinâmica
	01/5	Feriado
20	02/5	Capitulo 5 – Segunda lei da termodinâmica, exercícios
21	08/5	Capítulo 6 – Entropia
22	09/5	Capítulo 6 – Entropia
23	15/5	Capítulo 6 – Entropia
	l	

Instituto Federal Sul- rio-grandense - Campus Sapucaia do Sul Pró-reitoria de Ensino

Curso: Curso Superior Engenharia Mecânica Turmas: 4E

24	16/5	Capítulo 6 – Entropia
25	22/5	Capítulo 6 – Entropia
26	23/5	Capítulo 6 – Entropia
27	29/5	Capítulo 6 – Entropia
28	30/5	Capítulo 6 – Entropia, exercicios
29	5/6	Verificação 2 – capítulo VI
30	6/6	Capítulo 7 – Sistemas de potência a vapor, Capitulo 8 – Sistema de potência a gás
31	10/6	Provas de proficiência (sábado, equivale a segunda)
32	12/6	Capitulo 8 – Sistema de potência a gás, exercícios
33	13/6	Capítulo 9 – Sistemas de refrigeração e de bombas de calor, exercícios
34	19/6	Verificação 3 – capítulos VIII e IX
35	20/6	Capítulo 10 - Mistura de Gases Ideais e Aplicações à Psicrometria
36	24/6	Gincana (sábado equivale a segunda)
37	26/6	Entrega do trabalho cap 7 e cap 10. Revisão
38	27/6	Reavaliação 1 (capítulos I a V)
39	3/7	Revisão
40	4/7	Reavaliação 2 (capítulos VI a X)
	1	

Horários de atendimento do professor: Segunda: das 13:30 às 18:30. Das 20:30 às 21:15

Terça: 13:30 às 18:30 Sexta: das 13:30 às 18:30

Outros horários devem ser combinados com o professor.

Professor/data:

Enio César Machado Fagundes - 21/2/2017.

Coordenador: