
Estatística para a Qualidade

Curso Técnico em Plásticos Prof. Eveline Pereira Aula 1

O que é estatística?

 A Estatística está presente em todas as áreas da ciência que envolvam o planejamento do experimento, a construção de modelos, a coleta, o processamento e a análise de dados e sua consequente transformação em informação, para postular, refutar ou validar hipóteses científicas sobre um fenômeno observável.

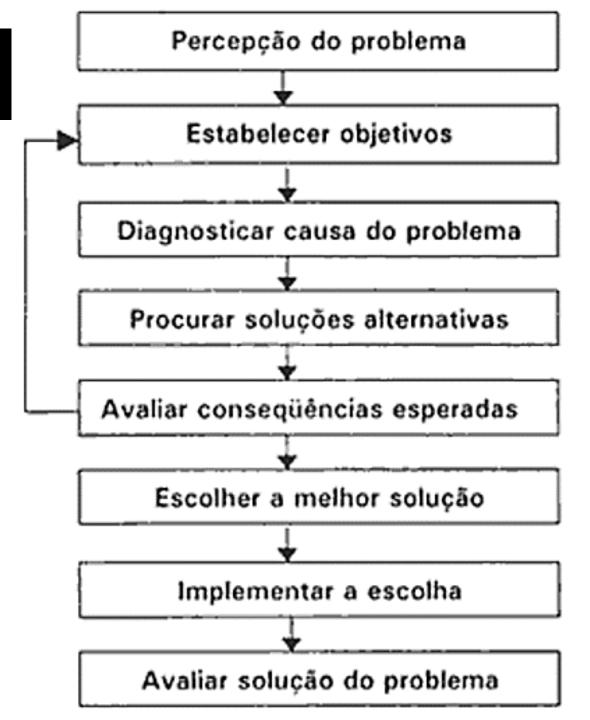
P. O que é estatística?

R.: A Estatística pode ser pensada como a ciência de aprendizagem a partir de dados.

 No mundo moderno, a alta competitividade na busca de tecnologias e de mercados tem provocado uma constante corrida pela informação. Essa é uma tendência crescente e irreversível.

Tomada de Decisão:

Intuição x Razão



 O aprendizado a partir de dados é um dos desafios mais relevantes da era da informação em que vivemos.

 Em linhas gerais, podemos dizer que a Estatística fornece técnicas e métodos de <u>análise de dados</u> que auxiliam no processo de <u>tomada de decisão</u> nos mais variados problemas onde existe <u>incerteza</u>.

 Processo de Tomada de Decisão:

Onde aplicamos a estatística?



 Os métodos estatísticos são largamente empregados em diversas áreas:

- Genética
- > Economia
- Ciências Sociais
- > Engenharias
- ➤ Ciência da Educação
- ➤ Administração
- ➤ Ciência da Computação
- > Medicina
- Biologia
- Psicologia

Dê 5 exemplos de estatísticas do nosso cotidiano:

- Genética: caso da microcefalia
- Economia: evolução do PIB
- Ciências Sociais: taxa de desemprego
- Engenharias: índice de reciclagem, rendimento de um novo material
- > Ciência da Educação: Evasão escolar
- Administração: resultado financeiro da empresa
- Ciência da Computação: ataques à sistemas
- Medicina: aumento da expectativa de vida
- > Biologia: animais em extinção
- Psicologia: depressão, doença do século

O que é qualidade?

 A palavra/termo qualidade possui extrema diversidade de interpretações dada por vários estudiosos e organizações. Cada um desses procura definir a qualidade de modo coeso, assimilável e, principalmente, aplicável a todos os ramos de atividade e portes empresariais.

 Seguem algumas recorrentes definições para QUALIDADE:

Conceito de qualidade		
Ano	Autor	Definição de qualidade
1949	Ishikawa	Rápida percepção e satisfação das necessidades do mercado, adequação ao uso dos produtos e homogeneidade dos resultados do processo (baixa variabilidade).
1950	Deming	Qualidade é sentir orgulho pelo trabalho bem-feito. Aprimoramento da Qualidade eleva a produtividade. Máxima utilidade para o consumidor.
1951	Feigenbaum	Qualidade só pode ser alcançado em uma empresa com a participação de todos. Perfeita satisfação do usuário.Qualidade é uma maneira de se gerenciar os negócios da empresa. Aprimoramento da satisfação do usuário.
1954	Juran	Qualidade é adequação ao uso. Satisfação das aspirações do usuário.
1979	Crosby	Qualidade é conformidade com especificações, com os requisitos do cliente.
1990	Cerqueira	Qualidade é sempre resultado de esforços inteligentes; Qualidade não é só para companhias.
	Neto	Indivíduos podem esforçar-se por excelência em seu dia-a-dia.

Qualidade no passado

Qualidade no presente

Qualidade no futuro

 Em suma, a qualidade é apresentada como <u>um conjunto de características</u> contidas em algo adquirido, desde que esteja em concordância com suas especificações e <u>que</u>, <u>no mínimo</u>, atenda as expectativas de quem o consome.

Qualidade: fácil reconhecer, difícil definir;

 Ao longo dos anos a qualidade tem desempenhado um papel relevante no que se refere ao <u>aumento da vantagem</u> <u>competitiva</u> para as organizações

• O que é <u>vantagem competitiva</u> ?

Explique como o aumento da qualidade pode gerar vantagens para as empresas?

A reação em cadeia de Deming

A qualidade do produto melhora

O custo diminui devido a menos re-trabalho, menos problemas, menos demora, melhores projetos uso eficiente de recursos e materiais.

A capacidade melhora.

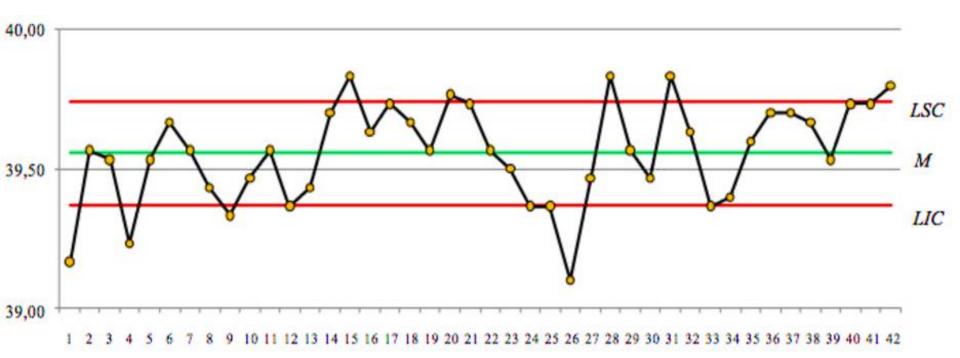
O mercado é conquistado devido a melhores produtos e preços menores

Lucro e mais serviço é conseguido

Permanência no negócio

O que é Estatistica para a Qualidade?

 Você já parou para pensar na variedade de marcas disponíveis para um mesmo produto?


 Como é o processo de escolha do consumidor?

 Entre vários aspectos, a qualidade tem se tornado um dos mais importantes fatores de decisão para os consumidores.

- A indústria então passou a adotar diferentes métodos para o controle de qualidade, os quais foram se desenvolvendo e aprimorando cada vez mais ao longo do tempo.
 - A estatística então se fez presente como importante ferramenta para qualquer metodologia de controle.

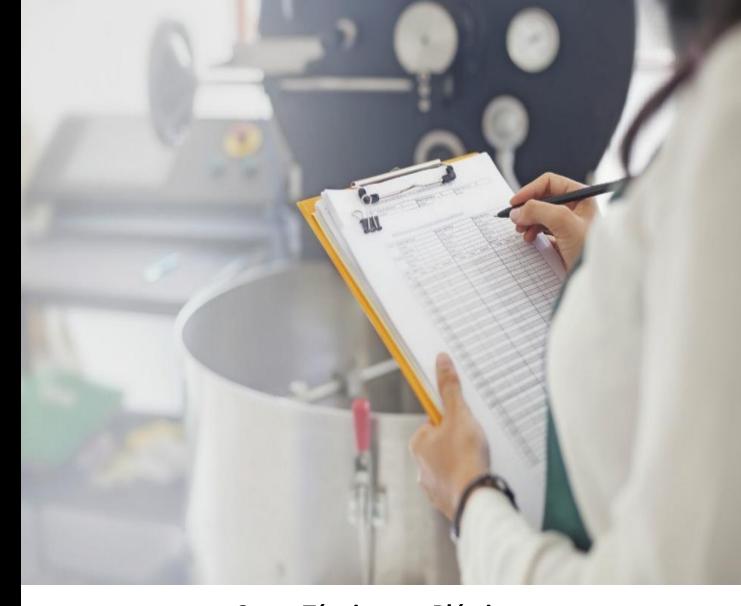
 Em toda empresa, os famosos gráficos de controle são tão utilizados que não conseguimos imaginar como seria caso não existissem.

 Antes, o controle de qualidade existente era bastante rudimentar e focava apenas no aumento da produtividade, com pouca preocupação com a qualidade.

 Apenas muito tempo depois tal pensamento mudou, e se objetivou alta produtividade aliada a alta qualidade e baixos custos. Para isso, os métodos estatísticos se mostraram fundamentais.

- A estatística é aplicada para classificar dados sobre as características de qualidade do produto e suas variações, desta forma, são utilizados para reduzir a variação dos processos, principal fonte dos defeitos, perda de qualidade e ganho de custos desnecessários.
- Hoje, temos acesso a inúmeras ferramentas da qualidade baseadas na estatística.
- É duro de imaginar que ainda hoje, existem empresas que não aproveitam essas ferramentas. O resultado disso são problemas surgindo a toda hora e desempenho não satisfatório no final do mês.

Responda:


1. → Considerando as definições sobre qualidade: Um item ou artigo produzido sem nenhum defeito é um artigo de qualidade? Porquê?

2. → Qual seria uma definição tradicional e uma definição moderna de qualidade?

3. → Como é possível relacionar variabilidade e melhoria da qualidade?

4. → Pense em um exemplo de tomada de decisão e descreva seus passos?

Estatística para a Qualidade

Curso Técnico em Plásticos Prof. Eveline Pereira Aula 2

O método:

 Método é um conjunto de meios dispostos convenientemente para se chegar a um fim que se deseja

Entre os métodos científicos temos:

Método Experimental

Método Estatístico

– Método Experimental:

consiste em manter constante todas as causas (fatores), menos uma, e variar essa causa de modo que o pesquisador possa descobrir seus efeitos, caso existam.

Esse método é
 preferido no estudo da
 física, da química, etc.

– MétodoExperimental:

Ex.: Deseja-se

determinar qual é o
automóvel mais
econômico A ou B?
Como você
determinaria?

– Método Experimental:

Ex.: Deseja-se determinar qual é o automóvel mais econômico A ou B? Como você determinaria?

- \rightarrow 1. Quais são os fatores que influenciam o experimento?
- \rightarrow 2. Quais são os fatores que <u>não</u> irão variar?
- \rightarrow 3. Qual o fator que irá variar?

→ 1. Quais são os fatores que influenciam o experimento?

 Automóvel A, Automóvel B, motorista, velocidade, percurso, quantidade de combustível, tipo de combustível, calibragem dos pneus, etc.

→ 2. Quais são os fatores que não irão variar?

• Serão constantes motorista, velocidade, percurso, quantidade de combustível, tipo de combustível, calibragem dos pneus, etc.

\rightarrow 3. Qual o fator que irá variar?

O automóvel (A ou B)

 Método Estatístico: Muitas vezes temos a necessidade de descobrir fatos em campos onde o método experimental não se aplica, como por exemplo, nas ciências sociais, onde os fatores que afetam o fenômeno em estudo não podem permanecer constantes enquanto fazemos variar a causa que nos interessa.

 Ex.: Quais as causas que definem do preço de um determinado produto?

Ex.: Quais as causas que definem do preço de um determinado produto?

 Considerando a lei da oferta e da procura, sabemos que nos períodos em que a oferta de um determinado produto excede muito à procura, seu preço tende a cair. Já em períodos nos quais a demanda passa a superar a oferta, a tendência é o aumento do preço. Assim para aplicar o método experimental bastaria variar apenas a quantidade ofertada e manter os outros fatores constantes.

→ Que fatores são esses?

- Todas as pessoas deveriam ter o mesmo poder de compra
- Todas as pessoas deveriam ter o gosto pelo produto

→Isso é realmente possível?

Na prática, não.

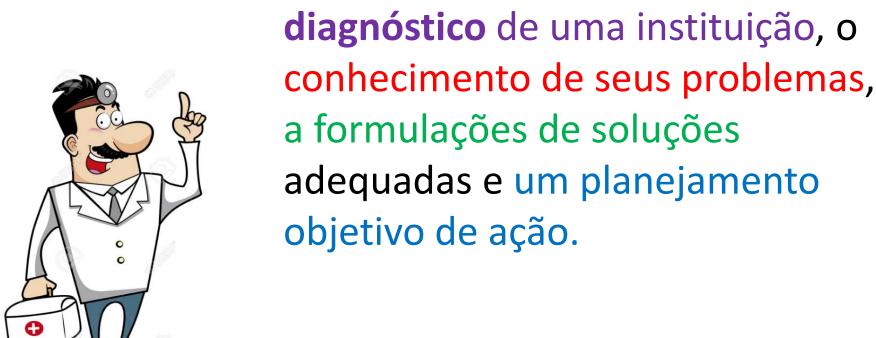
 O Método Estatístico, diante da impossibilidade de manter as causas constantes, admite todas as causas presentes, variando-as, registrando essas variações e procurando determinar, no resultado final, que influencias cabem a cada uma delas.

 Dados: são guias para nossas ações. A partir dos dados aprendemos os fatos pertinentes e tomamos providências apropriadas baseadas em tais fatos.

Ex.: Uma indústria produz baldes plásticos idênticos em diferentes máquinas injetoras. Analisando o diâmetro dos baldes produzidos verificou-se que os baldes injetados na máquina "B" possuíam diâmetro inferior àqueles produzidos nas máquinas A e C.

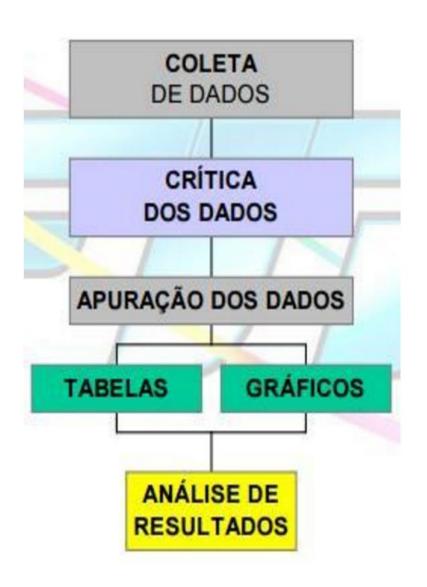
- → Qual é a variável que está sendo analisada?
- → Qual é o fato de interesse para a tomada de decisão no exemplo?
- → Que providências você tomaria?

- Antes de coletar dados é importante definir o que se pretende fazer com eles. No controle de qualidade, os objetivos da coleta de dados são:
 - Controle e acompanhamento do processo produtivo
 - Inspeção
 - Melhoria dos processos produtivos
 - Desenvolvimento de novos produtos
- → Explique cada um dos objetivos citados acima:


- Controle e acompanhamento do processo produtivo: para verificar a variabilidade
- Inspeção: para aprovar ou rejeitar lotes
- Melhoria dos processos produtivos: para manter a competitividade
- Desenvolvimento de novos produtos: <u>é preciso</u> conhecer os desejos dos clientes
- Qualquer coleta de dados deve ter um propósito e deve ser seguida por ações.

 A coleta, a organização e descrição de dados estão a cargo da <u>Estatística Descritiva</u>, enquanto a <u>análise</u> e a interpretação estão a cargo da <u>Estatística Indutiva ou</u> <u>Inferencial.</u>

Assim, a análise e interpretação de


dados estatísticos possibilita o

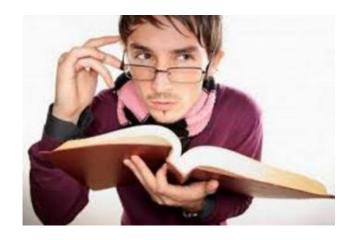
Fases do método estatístico:

- 1. Coleta de Dados
- 2. Crítica de Dados
- 3. Apuração de Dados
- 4. Apresentação dos dados
- 5. Análise dos Resultados

1) COLETA DE DADOS: Após o planejamento e determinação das características mensuráveis do fenômeno que se deseja estudar, damos início a coleta de dados.

A coleta de dados pode ser direta ou indireta:

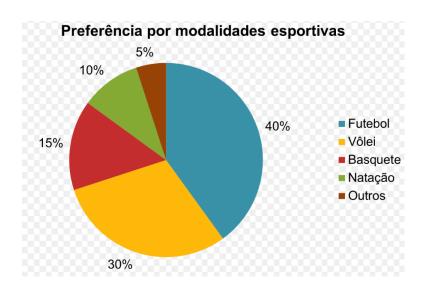
DIRETA – quando é feita sobre elementos informativos de registro obrigatório (nascimento, casamento, óbito, etc), ou ainda, quando os dados são coletados pelo próprio pesquisador através de questionários. Quanto ao tempo, a coleta direta de dados pode ser contínua, periódica ou ocasional.


- ➤ COLETA DE DADOS CONTÍNUA é feita continuamente, tal como nascimentos e óbitos
- COLETA DE DADOS PERIÓDICA é feita em períodos constantes de tempo, como censo, avaliações mensais, etc.
- ➤ COLETA DE DADOS OCASIONAL é feita extemporaneamente, a fim de atender a uma determinada situação especifica, emergencial, como por exemplo: pesquisa feita sobre determinada epidemia.

• INDIRETA – é quando <u>é feita sobre elementos já</u> <u>conhecidos</u> (coleta direta) e/ou do conhecimento de outros fenômenos relacionados com o fenômeno estudado. Ex.: estudo da mortalidade infantil (óbitos/nascimentos).

2) CRÍTICA DOS DADOS: consiste em verificar (criticar) os dados coletados em busca de possíveis falhas, a fim de evitar erros grosseiros (distração ou má interpretação), que possam influenciar o resultado final dos resultados.

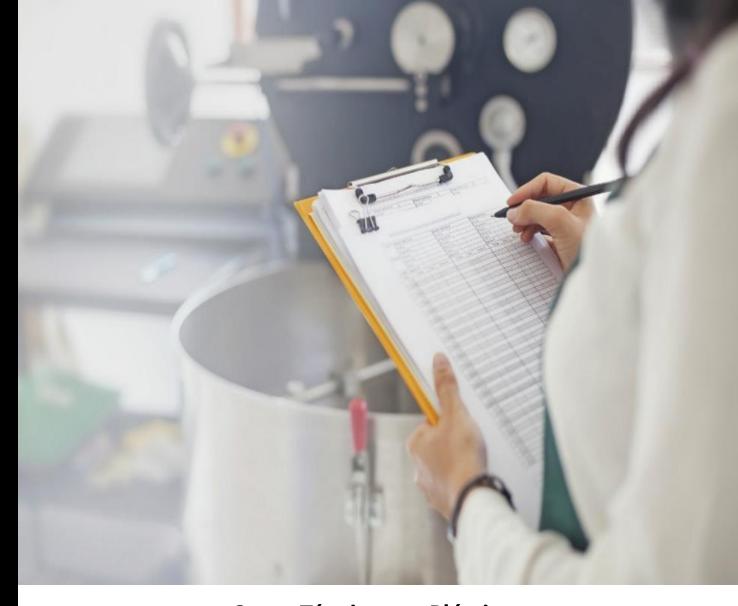
3) APURAÇÃO DOS DADOS - é o processamento dos dados e sua disposição mediante critérios de classificação.



4) EXPOSIÇÃO OU APRESENTAÇÃO DOS DADOS – é a forma que os dados serão apresentados, geralmente em forma de tabelas ou gráficos.

alimento	colesterol (mg/100 g)	
aimento	cru	cozido
carne de frango (branca) sem pele	58	75
carne de frango (escura) sem pele	80	124
pele de frango	104	139
carne suína (bisteca)	49	97
carne suína (toucinho)	54	56
carne bovina (contrafilé)	51	66
carne bovina (músculo)	52	67

Revista PRO TESTE, n.º 54, dez/2006 (com adaptações).


5) ANÁLISE DOS RESULTADOS – é o fechamento do estudo, e consiste em tirar as conclusões sobre o todo (população) a partir das informações fornecidas por parte representativa do todo (amostra), a através da Estatística INDUTIVA ou INFERENCIAL, tiram-se as conclusões dos resultados obtidos.

Exercícios:

- 1. O que é estatística?
- 2. O que é Qualidade?
- 3. Qual a importância da Estatística para as empresas?
- 4. Diferencie o Método Experimental e o Método Estatístico
- 5. Cite as fases do método estatístico:
- 6. O que significa coletar dados?
- 7. Porque é importante realizar a crítica dos dados?
- 8. O que é apurar dados?
- 9. De que forma os dados podem ser apresentados?
- 10. As conclusões pertencem a que parte da estatística?

Estatística para a Qualidade


Curso Técnico em Plásticos Prof. Eveline Pereira Aula 3

• Variável é, convencionalmente, o conjunto de resultados possíveis para um fenômeno

• Ex.: Para o fenômeno "sexo" os resultados possíveis são masculino ou feminino

→ Dê 5 exemplos de fenômenos:

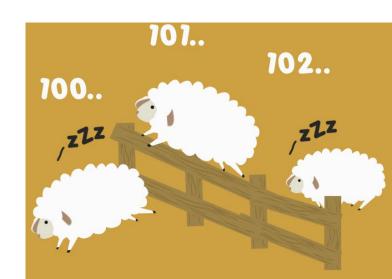
a) Qualitativa: quando expressa atributos, não pode ser medida por meios matemáticos

Ex.: cor dos olhos (azul, verde, castanho, preto), sexo (masculino ou feminino)

Uma variável qualitativa pode ser nominal ou ordinal.

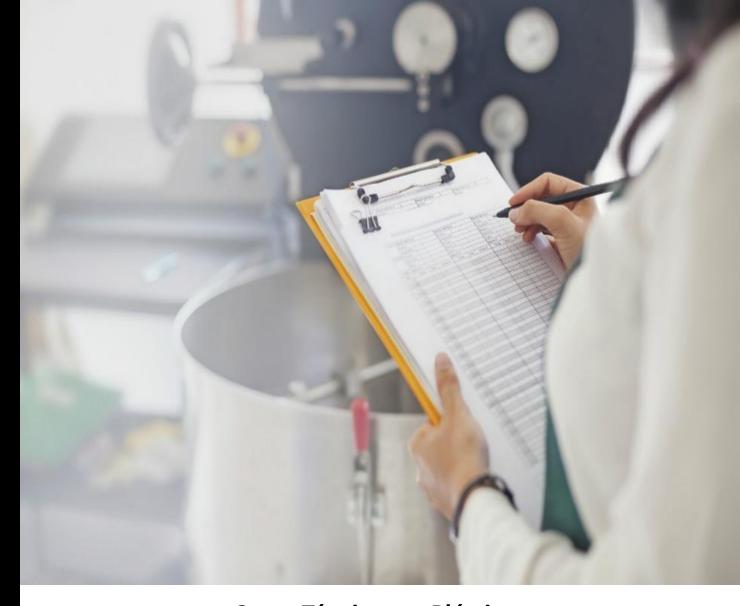
- Nominal: quando não é possível estabelecer uma ordem ou uma sequência. Ex.: sexo, cor dos olhos
- Ordinal: quando é possível estabelecer uma ordem ou uma sequência. Ex.: dias da semana, grau de escolaridade

b) Quantitativa: quando os valores podem ser mensurados e expressos por números Ex.: número de alunos de uma escola, diâmetro de um pistão.


Uma variável quantitativa pode ser contínua ou discreta.

- Contínua: quando a variável é capaz de assumir qualquer valor dentro de um determinado intervalo. Ex.: Diâmetro de um pistão (3,98mm, 3,99mm, 3,97mm, 4mm)
- Discreta: quando a variável não é capaz de assumir qualquer valor dentro de um determinado intervalo. Ex.: número de alunos em uma escola (1, 2, 3...) Não pode existir 1,5 alunos!!!

variável quantitativa contínua provém de medição


uma variável contínua discreta provém de enumeração

Eversisie	Α	Tamanho de uma peça de vestuário (36, 38,):	
Exercício:	В	Tamanho de uma peça de vestuário (P, M, G,):	
Classifique em as	С	Índice de colesterol:	
variáveis em	D	Área de um país:	
Qualitativas	Е	Temperatura média do mês de Julho:	
Nominais	F	Preço de um equipamento:	
(QLN),	G	Velocidade de um automóvel:	
Qualitativas H Tempo de uma viagem:		Tempo de uma viagem:	
Ordinais	I	Valor da conta de um telefone celular:	
(QLO),	J	Cor dos olhos:	
Quantitativas	K	Número do telefone do IFSul	
Discretas	L	Posição final numa corrida:	
(QTD), Quantitativas Contínuas	М	No. de dias chuvosos em Agosto:	
	N	Diâmetro da barriga do Jô Soares:	
(QTC)	0	Peso médio dos alunos do IFSul	
(210)	Р	Presença ou Ausência de uma doença:	
	Q	Escolaridade:	
	R	Acidentes com veículos num Sábado à noite:	
	S	Etnia:	
	Т	Sexo:	
	U	Idade:	
	V	Dias da semana:	
	W	Número da casa da professora Eveline	
	Х	Dias úteis no mês de fevereiro:	
	Υ	Aprovação no vestibular	
	Z	Notas dos alunos na disciplina Estatística para Qualidade	

Correção dos exercícios

Estatística para a Qualidade

Curso Técnico em Plásticos Prof. Eveline Pereira Aula 5

População:

O conjunto de entes portadores de, pelo menos, uma característica comum denominamos **população estatística** ou **universo estatístico**.

Ex.: Os Estudantes são a população das pessoas que estudam

→ Dê outros 3 exemplos de população:

Muitas vezes, por <u>dificuldades econômicas</u> <u>e temporais</u>, torna-se impossível ou muito trabalhoso estudar toda população estatística, assim, estuda-se uma parte da população: a amostra.

Uma **amostra** é um subconjunto finito da população.

"Para saber se o bolo ficou bom, basta uma fatia!"

O objetivo da estatística indutiva é tirar conclusões sobre as populações, com base em resultados verificados em amostras retiradas dessa população, mas para que as inferências sejam corretas é preciso que a amostra seja representativa do todo e nunca tendenciosa e aleatória.

AQUI NO LABORATÓRIO NÓS NÃO ACREDITAMOS EM AMOSTRAS ESTATÍSTICAS. NÃO É SÓ UM POUQUINHO DE SANGUE QUE VAI SER SUFICIENTE PRA PROVAR SE O SENHOR ESTÁ OU NÃO DOENTE, NÃO É VERDADE?

Em algumas áreas de estudo (ciências sociais, econômicas e pesquisas de opinião) problemas de amostragem são de grande complexidade, no entanto, há outras situações bem fáceis, como por exemplo, <u>a retirada de amostras para controle de qualidade</u> e recebimento de materiais em uma indústria.

Amostragem

Existe uma técnica especial – a amostragem – capaz de garantir o acaso na escolha das amostras. <u>Uma amostra deve ser</u> representativa, não tendenciosa e aleatória.

São 3 as principais técnicas de amostragem:

- 1. Amostragem Casual ou Aleatória Simples
- 2. Proporcional Estratificada
- 3. Amostragem Sistemática

1. Amostragem Casual ou Aleatória Simples

- Qualquer elemento da população tem a mesma chance de ser escolhido.
- Ex.: Sorteio Lotérico: A População é enumeradas de 1 a n e k elementos irão compor a amostra.

1. Amostragem Casual ou Aleatória Simples

 Ex.: Vamos obter uma amostra representativa para o estudo da estatura de 90 alunos do IFSul. A amostra será de 10% da população.

Como você faria?

1. Amostragem Casual ou Aleatória Simples

E se a população for muito grande? Não será muito trabalhoso????

 Nesse caso podemos utilizar a Tabela de Números Aleatórios ou um programa de computador

Tabela de Números Aleatórios

• É uma tabela construída de forma que os algarismos de 0-9 estão dispostos de forma aleatória nas linhas e colunas.

de Números Aleatórios Tabela

57 72 00 39 84	84 41 79 67 71	40 21 13 97 56	49 86 54 08 93	29 68 74 54 83
28 80 53 51 59	09 93 98 87 58	70 27 71 77 17	06 32 02 78 62	16 74 69 65 17
92 59 18 52 87	30 48 86 97 48	35 25 18 88 74	03 62 98 38 58	65 86 42 41 03
90 38 12 91 74	30 19 75 89 07	50 64 15 59 71	88 13 74 95 30	52 78 30 11 75
80 91 16 94 67	58 60 82 06 66	90 47 56 18 46	45 11 12 35 32	45 50 41 13 43
22 01 70 31 32	96 91 92 75 40	16 54 29 72 74	99 00 95 97 61	00 98 24 30 07
56 24 10 04 30	20 46 29 90 53	53 11 05 84 41	21 64 79 19 76	29 51 62 60 66
79 44 92 62 02	96 86 64 30 00	94 56 69 30 20	59 87 87 35 44	22 50 97 78 19
53 99 66 45 08	89 78 50 77 53	37 25 77 41 27	62 38 02 23 57	62 01 41 60 35
18 92 87 35 88	56 05 21 36 51	39 28 50 14 66	85 79 30 19 79	72 66 64 31 45
10 92 07 33 00	50 05 21 30 51	39 20 30 14 00	05 19 30 19 19	12 00 04 31 45
50.00.50.00.00	05 04 05 70 00	50 44 00 00 00	00.40.00.00.00	04 00 70 05 00
53 08 58 96 63	05 61 25 70 22	50 41 28 96 62	66 43 63 06 63	01 32 79 85 22
03 58 80 29 28	76 89 51 18 24	88 89 46 47 48	59 19 29 87 03	10 33 99 67 12
27 07 81 88 65	69 49 98 00 28	04 70 51 30 01	47 18 97 33 21	85 82 45 43 24
05 21 08 59 01	06 22 24 98 91	81 17 55 44 66	16 07 73 07 66	10 12 31 78 58
40 36 13 27 84	30 82 33 36 39	69 42 05 58 64	61 12 33 89 27	89 52 66 71 93
54 60 25 28 85	88 20 00 10 59	61 05 36 61 33	72 01 01 19 01	61 10 51 20 91
71 51 63 40 76	71 11 73 73 52	37 31 60 45 88	92 73 43 71 28	04 98 09 02 48
61 02 01 81 73	92 60 66 73 58	53 34 42 68 26	38 34 03 27 44	96 04 46 65 93
82 55 93 13 46	30 95 26 55 06	96 17 65 91 72	39 79 96 12 49	52 80 63 26 99
89 98 54 14 21	74 13 57 68 19	86 28 60 89 47	33 15 26 28 77	45 38 48 08 08
00 99 84 84 14	67 95 13 77 58	90 14 50 79 42	73 63 31 06 60	43 40 12 55 04
62 41 50 78 20	48 05 88 43 52	98 03 19 93 92	03 04 97 25 84	95 95 03 63 31
94 27 90 69 24	68 09 92 11 86	07 63 83 19 32	99 51 15 55 71	09 27 02 67 00
44 89 29 28 84	36 28 25 15 82	87 74 18 97 25	76 10 63 26 76	02 26 74 53 28
97 30 76 95 33	21 10 54 26 95	66 65 52 04 99	36 58 48 03 08	93 63 58 17 96
0. 00.0000	21 10 0 1 20 00	33 33 32 31 33	00 00 10 00 00	00 00 00 11 00
39 16 58 04 44	80 15 59 59 83	90 95 54 66 81	84 39 60 85 38	88 66 33 35 69
60 78 11 03 26	67 50 34 09 61	31 30 20 76 93	66 30 83 51 09	33 83 64 76 05
03 19 23 47 62	89 57 77 91 33	88 47 60 59 37	54 39 48 77 67	49 85 38 43 91
41 28 52 67 56	25 39 59 96 65	51 36 90 32 22	39 33 05 22 99	03 39 97 96 99
77 54 98 50 39	25 37 42 52 97	10 03 56 04 92	81 66 86 70 01	48 89 55 82 10
28 63 41 61 91	64 24 83 81 37	34 48 83 27 96	38 71 69 73 06	77 50 25 64 60
74 24 48 85 40	12 33 59 67 50	14 98 14 26 42	79 79 13 52 89	69 78 80 44 71
00 24 03 37 96	46 68 75 05 32	42 16 63 33 28	97 26 36 47 27	73 65 38 34 46
05 41 47 69 69	45 36 16 71 18	95 51 97 22 04	13 23 96 58 60	03 69 48 79 83
62 69 84 97 97	47 23 66 51 56	13 08 69 11 52	75 59 26 86 81	80 43 00 98 92
02 03 04 31 31	41 23 00 31 30	13 00 03 11 32	73 33 23 00 01	00 43 00 30 32

Tabela dos Números Aleatórios

Ex.: Definimos que a leitura iniciará na linha 18 da esquerda para direita e que a amostra será de 9 elementos

População: 90 = 2 algarismos

Pela tabela temos:

Tabela de Números Aleatórios

5.9				14
57 72 00 39 84	84 41 79 67 71	40 21 13 97 56	49 86 54 08 93	29 68 74 54 83
28 80 53 51 59	09 93 98 87 58	70 27 71 77 17	06 32 02 78 62	16 74 69 65 17
92 59 18 52 87	30 48 86 97 48	35 25 18 88 74	03 62 98 38 58	65 86 42 41 03
90 38 12 91 74	30 19 75 89 07	50 64 15 59 71	88 13 74 95 30	52 78 30 11 75
80 91 16 94 67	58 60 82 06 66	90 47 56 18 46	45 11 12 35 32	45 50 41 13 43
00 31 10 34 01	30 00 02 00 00	30 47 30 10 40	45 11 12 55 52	43 30 41 13 43
22 01 70 31 32	96 91 92 75 40	16 54 29 72 74	99 00 95 97 61	00 98 24 30 07
56 24 10 04 30	20 46 29 90 53	53 11 05 84 41	21 64 79 19 76	29 51 62 60 66
79 44 92 62 02	96 86 64 30 00	94 56 69 30 20	59 87 87 35 44	22 50 97 78 19
53 99 66 45 08	89 78 50 77 53	37 25 77 41 27	62 38 02 23 57	62 01 41 60 35
18 92 87 35 88	56 05 21 36 51	39 28 50 14 66	85 79 30 19 79	72 66 64 31 45
F2 00 F0 0C C2	05 64 25 70 22	50 44 20 00 02	66 43 63 06 63	04 22 70 85 22
53 08 58 96 63	05 61 25 70 22	50 41 28 96 62	66 43 63 06 63	01 32 79 85 22
03 58 80 29 28	76 89 51 18 24	88 89 46 47 48	59 19 29 87 03	10 33 99 67 12
27 07 81 88 65	69 49 98 00 28	04 70 51 30 01	47 18 97 33 21	85 82 45 43 24
05 21 08 59 01	06 22 24 98 91	81 17 55 44 66	16 07 73 07 66	10 12 31 78 58
40 36 13 27 84	30 82 33 36 39	69 42 05 58 64	61 12 33 89 27	89 52 66 71 93
Manual Control Control - M. Application - 1				1790 MORE HATHER AND STORY
54 60 25 28 85	88 20 00 10 59	61 05 36 61 33	72 01 01 19 01	61 10 51 20 91
71 51 63 40 76	71 11 73 73 52	37 31 60 45 88	92 73 43 71 28	04 98 09 02 48
61 02 01 81 73	92 60 66 73 58	53 34 42 68 26	38 34 03 27 44	96 04 46 65 93
82 55 93 13 46	30 95 26 55 06	96 17 65 91 72	39 79 96 12 49	52 80 63 26 99
89 98 54 14 21	74 13 57 68 19	86 28 60 89 47	33 15 26 28 77	45 38 48 08 08
00 99 84 84 14	67 95 13 77 58	90 14 50 79 42	73 63 31 06 60	43 40 12 55 04
62 41 50 78 20	48 05 88 43 52	98 03 19 93 92	03 04 97 25 84	95 95 03 63 31
94 27 90 69 24	68 09 92 11 86	07 63 83 19 32	99 51 15 55 71	09 27 02 67 00
44 89 29 28 84	36 28 25 15 82	87 74 18 97 25	76 10 63 26 76	02 26 74 53 28
97 30 76 95 33	21 10 54 26 95	66 65 52 04 99	36 58 48 03 08	93 63 58 17 96
39 16 58 04 44	80 15 59 59 83	90 95 54 66 81	84 39 60 85 38	88 66 33 35 69
60 78 11 03 26	67 50 34 09 61	31 30 20 76 93	66 30 83 51 09	33 83 64 76 05
03 19 23 47 62	89 57 77 91 33	88 47 60 59 37	54 39 48 77 67	49 85 38 43 91
41 28 52 67 56	25 39 59 96 65	51 36 90 32 22	39 33 05 22 99	03 39 97 96 99
77 54 98 50 39	25 37 42 52 97	10 03 56 04 92	81 66 86 70 01	48 89 55 82 10
11 54 50 50 55	23 31 42 32 31	10 03 30 04 32	0100007001	40 03 33 02 10
28 63 41 61 91	64 24 83 81 37	34 48 83 27 96	38 71 69 73 06	77 50 25 64 60
74 24 48 85 40	12 33 59 67 50	14 98 14 26 42	79 79 13 52 89	69 78 80 44 71
00 24 03 37 96				73 65 38 34 46
	46 68 75 05 32	42 16 63 33 28	97 26 36 47 27	
05 41 47 69 69	45 36 16 71 18	95 51 97 22 04	13 23 96 58 60	03 69 48 79 83
62 69 84 97 97	47 23 66 51 56	13 08 69 11 52	75 59 26 86 81	80 43 00 98 92

Pela tabela temos:

61, 02, 01, 81, 73, 92, 60, 66, 73, 58, 53, 34 = 12 elementos

Vamos fazer a crítica dos dados:

Olhe para os dados coletados e reflita se, de fato, são dados válidos. O que você percebe?

Pela tabela temos:

61, 02, 01, 81, 73, 92, 60, 66, 73, 58, 53, 34 = 12 elementos

Vamos fazer a crítica dos dados:

Se a população é 90, o elemento 92 não faz parte da amostra! Não se pode repetir um elemento da amostra, por isso excluímos um dos "73"

Logo ficam: 61, 02, 01, 81, 73, 60, 66, 58, 53 e 34.

Restaram 10 elementos mas definimos que a amostra seria de nove elementos então tiramos o último elemento (34):

Ficam as amostras **61, 02, 01, 81, 73, 60, 66, 58, 53**

Ficam as amostras 61, 02, 01, 81, 73, 60, 66, 58, 53

Assim se medirmos as alturas dos alunos correspondentes as amostras selecionadas, teremos uma amostra representativa da altura da população de 90 alunos.

Números aleatórios podem ser gerados por programas de computador ou em calculadoras. Na calculadora científica cada vez que a tecla Ran # é acionada, um número aleatório é gerado

2. Amostragem Proporcional Estratificada

Muitas vezes a população se divide em subpopulações – os **estratos**

de estrato para estrato = comportamento heterogêneo

dentro de cada estrato = comportamento homogêneo

Ex.: estatura dos alunos e alunas do IFSul

2. Amostragem Proporcional Estratificada

Dessa forma, faremos uma amostragem proporcional estratificada considerando a estatura dos alunos e alunas.

Ex.: Supondo que dos 90 alunos do IFSul, 54 são meninos e 36 são meninas, obtenha uma amostra proporcional estratificada de 10% da população:

Sexo	População	10%	Amostra
M			
F			
Total			

2. Amostragem Proporcional Estratificada

Ex.: Supondo que dos 90 alunos do IFSul, 54 são meninos e 36 são meninas, obtenha uma amostra proporcional estratificada de 10% da população:

Sexo	População	10%	Amostra
М	54	5,4	5
F	36	3,6	4
Total	90	9	9

Na tabela de números aleatórios considerar de 01 a 54 menino e de 55 a 90 menina. Utilizar primeira e segunda coluna verticalmente para baixo

de Números Aleatórios Tabela

	72 00 39 84	84 41 79 67 71	40 21 13 97 56	49 86 54 08 93	29 68 74 54 83
	28 80 53 51 59	09 93 98 87 58	70 27 71 77 17	06 32 02 78 62	16 74 69 65 17
	2 59 18 52 87	30 48 86 97 48	35 25 18 88 74	03 62 98 38 58	65 86 42 41 03
ç	0 38 12 91 74	30 19 75 89 07	50 64 15 59 71	88 13 74 95 30	52 78 30 11 75
8	30 91 16 94 67	58 60 82 06 66	90 47 56 18 46	45 11 12 35 32	45 50 41 13 43
2	22 01 70 31 32	96 91 92 75 40	16 54 29 72 74	99 00 95 97 61	00 98 24 30 07
5	66 24 10 04 30	20 46 29 90 53	53 11 05 84 41	21 64 79 19 76	29 51 62 60 66
7	9 44 92 62 02	96 86 64 30 00	94 56 69 30 20	59 87 87 35 44	22 50 97 78 19
Ę	3 99 66 45 08	89 78 50 77 53	37 25 77 41 27	62 38 02 23 57	62 01 41 60 35
1	18 92 87 35 88	56 05 21 36 51	39 28 50 14 66	85 79 30 19 79	72 66 64 31 45
5	3 08 58 96 63	05 61 25 70 22	50 41 28 96 62	66 43 63 06 63	01 32 79 85 22
0	3 58 80 29 28	76 89 51 18 24	88 89 46 47 48	59 19 29 87 03	10 33 99 67 12
2	27 07 81 88 65	69 49 98 00 28	04 70 51 30 01	47 18 97 33 21	85 82 45 43 24
0	5 21 08 59 01	06 22 24 98 91	81 17 55 44 66	16 07 73 07 66	10 12 31 78 58
4	10 36 13 27 84	30 82 33 36 39	69 42 05 58 64	61 12 33 89 27	89 52 66 71 93
Ę	64 60 25 28 85	88 20 00 10 59	61 05 36 61 33	72 01 01 19 01	61 10 51 20 91
7	1 51 63 40 76	71 11 73 73 52	37 31 60 45 88	92 73 43 71 28	04 98 09 02 48
ϵ	61 02 01 81 73	92 60 66 73 58	53 34 42 68 26	38 34 03 27 44	96 04 46 65 93
8	32 55 93 13 46	30 95 26 55 06	96 17 65 91 72	39 79 96 12 49	52 80 63 26 99
8	98 54 14 21	74 13 57 68 19	86 28 60 89 47	33 15 26 28 77	45 38 48 08 08
Ċ	00 99 84 84 14	67 95 13 77 58	90 14 50 79 42	73 63 31 06 60	43 40 12 55 04
е	2 41 50 78 20	48 05 88 43 52	98 03 19 93 92	03 04 97 25 84	95 95 03 63 31
ç	4 27 90 69 24	68 09 92 11 86	07 63 83 19 32	99 51 15 55 71	09 27 02 67 00
4	14 89 29 28 84	36 28 25 15 82	87 74 18 97 25	76 10 63 26 76	02 26 74 53 28
9	7 30 76 95 33	21 10 54 26 95	66 65 52 04 99	36 58 48 03 08	93 63 58 17 96
3	9 16 58 04 44	80 15 59 59 83	90 95 54 66 81	84 39 60 85 38	88 66 33 35 69
6	60 78 11 03 26	67 50 34 09 61	31 30 20 76 93	66 30 83 51 09	33 83 64 76 05
0	3 19 23 47 62	89 57 77 91 33	88 47 60 59 37	54 39 48 77 67	49 85 38 43 91
4	11 28 52 67 56	25 39 59 96 65	51 36 90 32 22	39 33 05 22 99	03 39 97 96 99
7	7 54 98 50 39	25 37 42 52 97	10 03 56 04 92	81 66 86 70 01	48 89 55 82 10
2	28 63 41 61 91	64 24 83 81 37	34 48 83 27 96	38 71 69 73 06	77 50 25 64 60
7	4 24 48 85 40	12 33 59 67 50	14 98 14 26 42	79 79 13 52 89	69 78 80 44 71
0	0 24 03 37 96	46 68 75 05 32	42 16 63 33 28	97 26 36 47 27	73 65 38 34 46
	5 41 47 69 69	45 36 16 71 18	95 51 97 22 04	13 23 96 58 60	03 69 48 79 83
	62 69 84 97 97	47 23 66 51 56	13 08 69 11 52	75 59 26 86 81	80 43 00 98 92
	TO SEE THE CONTRACT OF THE CONTRACT OF THE	attender in Marco 2020 of 1950 (25)	automativa verify designation	And the contract of the state of the	TO SEE COMMONSON SECTION TO SECURE !

2. Amostragem Proporcional Estratificada

Valores encontrados:

57, 28, 92, 90, 80, 22, 56, 79, 53, 18, 53, 03, 27, 05, 40

Crítica:

2. Amostragem Proporcional Estratificada

Sexo	População	10%	Amostra
М	54	5,4	5
F	36	3,6	4
Total	90	9	9

Crítica:

Crítica dos dados: Excluímos os elementos acima de 90 e os repetidos:

57, 28, 92, 90, 80, 22, 56, 79, 53, 18, 53, 03, 27, 05, 40.

Por fim temos:

- Meninos(1-54); (5): 28, 22, 53, 18, 03
- Meninas (55-90); (4): 57, 90, 80, 56

3. Amostragem Sistemática

Quando os elementos da população já estão ordenados, não há necessidade de construir um sistema de referência, basta estabelecer um critério de coleta de dados, esse tipo de amostragem é dita sistemática.

Ex.: Em uma linha de produção, a cada 10 itens produzidos retira-se uma amostra. Tamanho da amostra é 10% da produção diária.

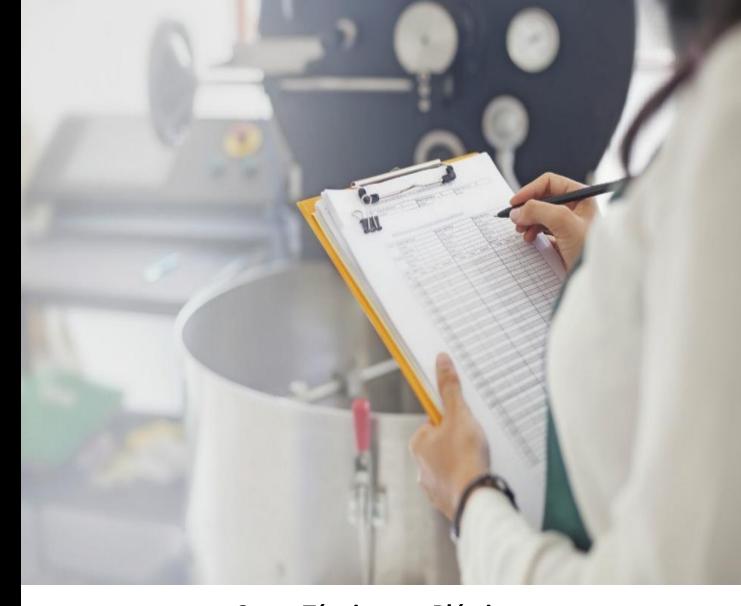
Exercícios

- 1. Uma escola de ensino fundamental tem 124 alunos matriculados. Obtenha uma amostra representativa correspondente a 15% da população.
- Utilize a 8ª, 9ª e 10ª colunas, a partir da primeira linha, da Tabela de Números Aleatórios (de cima para baixo).
- 2. O diretor de uma escola na qual estão matriculados 280 meninos e 320 meninas, desejoso de conhecer as condições de vida extraescolar de seus alunos e não dispondo de tempo para entrevistar todas as famílias, resolveu fazer um levantamento, por amostragem, em 10% dessa clientela. Obtenha, para esse diretor, os elementos componentes da amostra.

Exercícios

3. Uma cidade X apresenta o seguinte quadro relativo às suas escolas de ensino fundamental. Obtenha uma amostra proporcional estratificada de 120 estudantes.

ESCOLAS	NÚMERO DE ESTUDANTES		
	MASCULINO	FEMININO	
A	80	95	
В	102	120	
С	110	92	
D	134	228	
E	150	130	
F	300	290	
Total	876	955	


4. Uma população encontra-se dividida em três estratos, com tamanhos, respectivamente, n_1 =40, n_2 =100 e n_3 =60. Sabendo que, ao ser realizada uma amostragem estratificada proporcional, nove elementos da amostra foram retirados do 3º estrato, determine o número total de elementos da amostra.

Exercícios

5. Mostre como seria possível retirar uma amostra de 32 elementos de uma população ordenada formada por 2.432 elementos. Na ordenação geral, qual dos elementos seria escolhido para pertencer à amostra, sabendo-se que o elemento de ordem 1.420 a ela pertence?

- a) 1648
- b) 290
- c) 725
- d) 2025
- e) 1120

Estatística para a Qualidade

Curso Técnico em Plásticos Prof. Eveline Pereira Aula 6

Um dos objetivos da estatística é sintetizar informações para que tenhamos uma visão global da variação das variáveis envolvidas, para isso, utilizam-se **gráficos e tabelas**, que fornecem rápidas e seguras informações a respeito das variáveis em estudo.

A finalidade da tabela é apresentar os dados de modo ordenado, simples e fácil à percepção, portanto, uma tabela deve ser construída de modo a **fornecer o máximo de esclarecimentos com um mínimo de espaço**.

Elementos constitutivos de uma tabela

Segundo o IBGE, uma tabela deve conter:

- 1. Número
- 2. Título
- 3. Corpo (Cabeçalho, Linhas, Colunas, Coluna Indicadora, Casa ou célula, Rodapé)
- 4. Fonte
- 5. Notas e Chamadas

Elementos constitutivos de uma tabela

 a) Número: que deve ser precedido da palavra "Tabela" a fim de identifica-la no texto.

Ex.: Conforme Tabela 1, verifica-se

Tabela 1. Brasil: Esperança de vida ao nascer -1980 e 2013

Anos	Homens	Mulheres
1980	59,6	65,7
2013	71,3	78,6

Fonte: IBGE

Elementos constitutivos de uma tabela

b) Título: Localizado na parte superior da tabela, após o número.

Deve ser o mais completo e sintetizado possível.

O título deve responder as seguintes questões:

- O que? Assunto a ser representado (Fato);
- Onde? O lugar onde ocorreu o fenômeno (local);
- Quando? A época em que se verificou o fenômeno (tempo);

Tabela 1. Brasil: Esperança de vida ao nascer -1980 e 2013

Anos	Homens	Mulheres
1980	59,6	65,7
2013	71,3	78,6

Fonte: IBGE

Elementos constitutivos de uma tabela

- c) Corpo: parte da tabela composta por linhas e colunas, contém as informações das variáveis em estudo. Deve conter:
 - Cabeçalho: parte da tabela na qual é designada a natureza do conteúdo de cada coluna.
 - Linhas: parte do corpo que contém uma sequência horizontal de informações.
 - Colunas: parte do corpo que contém uma sequência vertical de informações.
 - Coluna Indicadora: coluna que contém as discriminações correspondentes aos valores distribuídos pelas colunas numéricas.
 - Casa ou célula: parte da tabela formada pelo cruzamento de uma linha com uma coluna.
 - Rodapé: É o espaço aproveitado em seguida ao fecho da tabela, onde são colocadas as notas de natureza informativa (fonte, notas e chamadas)

Elementos constitutivos de uma tabela

Tabela 1. Brasil: Esperança de vida ao nascer -1980 e 2013

	Anos	Homens	Mulheres
	1980	59,6	65,7
	2013	71,3	78,6
Font	: IBGE		

Elementos constitutivos de uma tabela

- d) Fonte: refere-se à entidade que organizou ou forneceu os dados expostos.
- e) Notas e Chamadas: são esclarecimentos contidos na tabela (nota conceituação geral; chamada esclarecer minúcias em relação a uma célula).

<u>SVNIT</u>

Sindicato dos Empregados em Empresas de Segurança e Vigilância, Transportes de Valores e Similares do Município de Niterói e Região (São Gonçalo, Itaboraí, Rio Bonito e Maricá)

REG MTE N° 24.000.003037/09 – CNPJ 30.184.261/0001-70 - COD SINDICAL 022.261.03800-2 e-mail:svnit@r7.com / www.svnit.org

TABELA DE SALÁRIOS CONVENÇÃO 1º DE MARÇO DE 2015 A 29 DE FEVEREIRO DE 2016

Função	Piso	Hora	Adicional Noturno	Dia	Hora Extra 50%	Hora Extra 100%	Triênio
Vigilante	R\$ 1.510,60	6,87	1,37	50,53	10,30	13,73	30,21
Vigilante de Escolta	R\$ 1.963,70	8,93	1,79	65,46	13,39	17,85	39,27
Vigilante Motorista/Motociclista	R\$ 1.813,63	8,24	1,65	60,45	12,37	16,49	36,27
Vigilante Orgânico	R\$ 1,510,60	6,87	1,37	50,53	10,30	13,73	30,21
Vigilante Feminina/Recepcionista	R\$ 1,510,60	6,87	1,37	50,53	10,30	13,73	30,21
Segurança Pessoal Privada	R\$ 1.813,63	8,24	1,65	60,45	12,37	16,49	36,27
Supervisor de Área	R\$ 2.267,07	10,30	2,06	75,57	15,46	20,61	45,34
Fiscal de Posto / Supervisor Posto	R\$ 1.673,36	7.61	1,52	55,78	11,41	15,21	33,47
Instrutor	R\$ 1.661,64	7,55	1,50	55,39	11,32	15,10	39,12
Vigilante Brigadista	R\$ 1.510,60	6,87	1,37	50,53	10,30	13,73	30,21
Vigilante condutor de cães	R\$ 1.510,60	6,87	1,37	50,53	10,30	13,73	30,21
Vigilante de monitoramento de aparelhos eletrônicos	R\$ 1.510,60	6,87	1,37	50,53	10,30	13,73	30,21
Coordenador	R\$ 1.852,90	8,42	1,68	61,76	12,63	16,84	37,06

Todos os pisos já incluídos o Adicional de Periculosidade LEI 12.740:

Reajuste Salário: 9% Reajuste Tíquete: 27.% Valor do Tíquete R\$ 16,50

Mensalidade sindical (5% do Piso): R\$ 58,10

Período Noturno: 22h às 5h = 7 horas de trabalho que valem por 8h.

Adicional Noturno escala 12x36 - 15 plantões R\$ 164,40 Vigilante Patrimonial 16 plantões R\$ 175,36 Vigilante Patrimonial

> Cláudio José de Oliveira Presidente

Observações:

- As tabelas não devem ter traços verticais na extremidade externa.
 Isso diferencia quadro e tabela.
- Um traço horizontal (-) é utilizado quando o valor da célula é zero
- Três pontos (...) são utilizados quando não temos dados
- Ponto de interrogação (?) é utilizado quando há dúvidas sobre a exatidão do valor
- Zero (0) é utilizado quando o valor é muito pequeno.

Denominamos série estatística toda **tabela** que apresenta distribuição de um conjunto de dados estatísticos em função <u>da época</u>, <u>do local</u> ou <u>da espécie</u>.

Assim podemos classificar uma série em <u>histórica</u>, <u>geográfica</u> e <u>específica</u>.

Séries históricas, cronológicas, temporais ou marchas: Descrevem os valores das variáveis em determinado local, discriminados segundo intervalos de tempo variáveis.

Ex.:

Tabela 2. Frango: Preço médio em São Paulo – 2003 e 2008

Anos	Preço Médio (R\$)
2003	2,56
2004	2,64
2005	2,67
2006	2,53
2007	3,20
2008	3,64

Fonte: Associação Paulista de Avicultura

Séries geográficas espaciais, territoriais ou de localização:

Descrevem os valores das variáveis em determinado instante, discriminados segundo regiões.

Ex.:

Tabela 3. Duração média de estudos superiores - 1994

Países	Número de Anos
Itália	7,5
Alemanha	7
França	7
Holanda	5,9
Inglaterra	Menos de 4

Fonte: Revista Veja

Séries específicas ou categóricas: Descrevem os valores das variáveis em determinado tempo e local, discriminados segundo especificações e categorias.

Ex.:

Tabela 4. Brasil: Criação – 1994

Espécies	Quantidade
Bovinos	205.886.244
Bubalinos	1.156.870
Aves	821.541.630
Suínos	35.173.824
Ovinos	16.019.170
Caprinos	10.401.449

Fonte: IBGE

Séries Conjugadas / Tabela Dupla entrada: Afim de apresentar duas séries em uma única tabela, conjugam-se duas ou mais séries. Ex.:

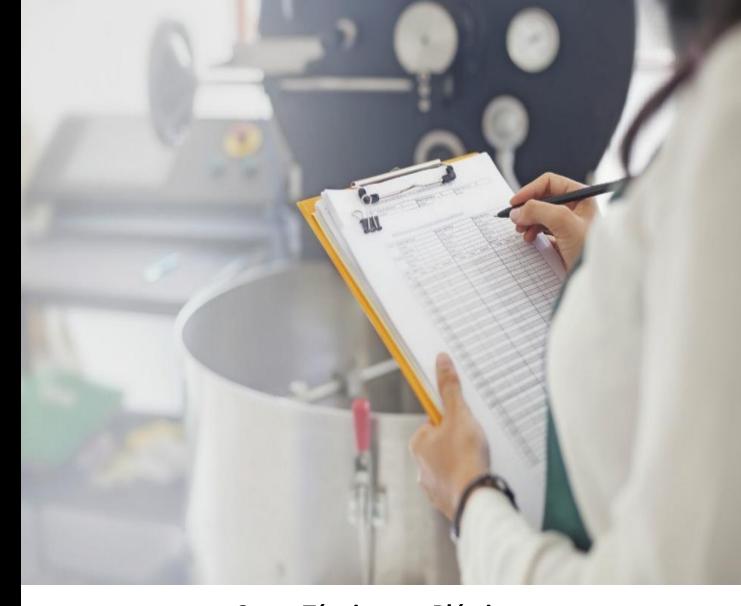
Tabela 5. Usuários do Facebook na América Latina por país, 2012-2014

	2012	2013	2014
Brasil	43,3	61,2	70,5
México	27,0	33,1	38,9
Argentina	14,2	16,3	18,2
Outros	56,6	68,5	79,8

Fonte: eMarketer, 2013

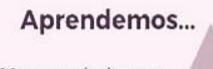
A Tabela 5 conjuga uma série geográfica e uma série histórica.

Atividade em Duplas:


Pesquisar uma tabela com estatísticas de dados reais e atualizados do Brasil que contenha todos os elementos constitutivos de uma tabela citados acima e assinalar cada um deles.

Entrega *on line* hoje e impressa até a próxima aula: 08/03

eveline@sapucaia.ifsul.edu.br


Vale uma questão da prova!

Estatística para a Qualidade

Curso Técnico em Plásticos Prof. Eveline Pereira Aula 7

PIRÂMIDE DE WILLIAM GLASSER

10% quando lemos;

20% quando ouvimos:

Escutar

30% quando observamos:

Ver

50% quando vemos e ouvimos:

Ver e ouvir

70% quando discutimos com outros:

Conversar, perguntar, repetir, relatar, numerar, reproduzir,, recordar, debater, definir, nomear

80% quando fazemos;

Escrever, interpretar, traduzir, expressar, revisar, identificar, comunicar, ampliar, utilizar, demonstrar, praticar, diferenciar, catalogar,

95% quando ensinamos aos outros.

Explicar, resumir, estruturar, definir, generalizar, elaborar, ilustrar

1. Classifique as séries:

<u>a</u>)

Tabela a. Produção de borracha natural - 1991-1993

Anos	Toneladas
1991	29.543
1992	30.712
1993	40663

Fonte: IBGE

p)

Tabela b. Avicultura Brasileira - 1992

Tipo	Número (1000 cabeças)
Galinhas	204.160
Galos, frangos, pintos	435.465
Codornas	2.488

Fonte: IBGE

c)

Tabela c. Vacinação contra a poliomielite - 1993

Região	Quantidade
Norte	211.209
Nordeste	631.040
Sudeste	1.119.708
Sul	418.785
Centro-oeste	185.823

Fonte: Ministério da Saúde

ď)

Tabela e. Produção Brasileira de Aço Bruto 1991-1993

Processos	Quantidade (1.000 t)		
	1991	1992	1993
Oxigênio Básico	17.934	18.849	19.698
Forno Elétrico	4.274	4.639	5.065
EOF	409	448	444

Fonte: Instituto Brasileiro de Siderurgia

- 2. Verificou-se no Brasil em 1993, o seguinte movimento de importação de mercadorias: 14.839.804t no valor de US\$ 1.469.104, oriundas da Arábia Saudita, 10.547.889 dos EUA no valor de US\$ 6.034.946.000; e 561.024 t, do Japão, no valor de US\$1.518.843.000. Dados fornecidos pelo Ministério da Fazenda.
- a) Organize a tabela
- b) Classifique a série
- 3. Desenhe uma tabela com dados fictícios indicando todos os seus elementos e classifique a série.

Correção

1. Uma escola de ensino fundamental tem 124 alunos matriculados. Obtenha uma amostra representativa correspondente a 15% da população. Utilize a 8ª, 9ª e 10ª colunas, a partir da primeira linha, da Tabela de Números Aleatórios (de cima para baixo).

1. Uma escola de ensino fundamental tem 124 alunos matriculados. Obtenha uma amostra representativa correspondente a 15% da população. Utilize a 8ª, 9ª e 10ª colunas, a partir da primeira linha, da Tabela de Números Aleatórios (de cima para baixo).

124 x 0,15 = 18,6 = 19 alunos

```
984,159, 287, 174, 467, 132, 430, 202, 508, 588, 663, 928, 865, 901, 784, 885,076, 173, 346, 421, 414, 820, 924, 884, 533, 444, 326, 762, 756,039, 191, 540, 796, 969, 797, 844, 099, 304, 301, 586, 969, 204,968, 897, 550,056, 768, 694,062, 308, 882, 711, 926, 309,741, 679, 480, 680, 362, 211, 801, 675, 895, 253, 253, 642, 123, 466, 453,472 179, 398, 886, 975, 082, 192, 629, 664, 850, 521, 125, 951, 998, 224, 233, 000, 173, 066, 526, 357, 513, 588, 992, 825, 0,54, 559, 034, 777, 959, 742, 483, 359, 875, 616, 366 677, 875, 974, 890, 066, 754, 905, 300, 775, 365, 702, 182, 002, 989, 363, 105, 735, 735, 550, 681, 775, 435, 118, 158, 269, 598, 096, 913, 966, 529, 813, 675, 053, 711, 515 140, 870, 835, 750, 690, 016, 353, 094, 337, 194, 250, 488, 804, 181, 969, 961, 327, 853, 696, 986, 890, 298, 607, 287, 566, 390, 131, 388, 551, 710, 734, 014, 242, 895, 613, 211, 277, 251, 641
```

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
76	39	99	56	62	123	82	66	54	34	2	105	118	96	53	16	94	14	110

2. O diretor de uma escola na qual estão matriculados 280 meninos e 320 meninas, desejoso de conhecer as condições de vida extraescolar de seus alunos e não dispondo de tempo para entrevistar todas as famílias, resolveu fazer um levantamento, por amostragem, em 10% dessa clientela. Obtenha, para esse diretor, os elementos componentes da amostra.

2. O diretor de uma escola na qual estão matriculados 280 meninos e 320 meninas, desejoso de conhecer as condições de vida extraescolar de seus alunos e não dispondo de tempo para entrevistar todas as famílias, resolveu fazer um levantamento, por amostragem, em 10% dessa clientela. Obtenha, para esse diretor, os elementos componentes da amostra.

	População	10%	Amostra
Meninos	280	28	28
Meninas	320	32	32
Total	600	60	60

3. Uma cidade X apresenta o seguinte quadro relativo às suas escolas de ensino fundamental. Obtenha uma amostra proporcional estratificada de 120 estudantes.

ESCOLAS	NÚMERO DE ESTUDANTES			
	MASCULINO	FEMININO		
Α	80	95		
В	102	120		
С	110	92		
D	134	228		
E	150	130		
F	300	290		
Total	876	955		

3. Uma cidade X apresenta o seguinte quadro relativo às suas escolas de ensino fundamental. Obtenha uma amostra proporcional estratificada de 120 estudantes.

ESCOLAS	NÚMERO DE ESTUDANTES				
	MASCULINO	FEMININO			
Α	80	95			
В	102	120			
С	110	92			
D	134	228			
E	150	130			
F	300	290			
Total	876	955			

$$876 + 955 = 1831$$

ESCOLAS	N° DE			X 0,065		Amostra		
	ESTUD	ANTES				proporcional		
						estrati	ificada	
	M	F	Total	M	F	М	F	
Α	80	95	175	5,2	6,175	5	6	
В	102	120	222	6,63	7,8	7	8	
С	110	92	202	7,15	5,98	7	6	
D	134	228	362	8,71	14,82	9	15	
E	150	130	280	9,75	8,45	10	8	
F	300	290	590	19,5	18,85	19	20	
Total	876	955	1831			57	63	

4. Uma população encontra-se dividida em três estratos, com tamanhos, respectivamente, n_1 =40, n_2 =100 e n_3 =60. Sabendo que, ao ser realizada uma amostragem estratificada proporcional, nove elementos da amostra foram retirados do 3º estrato, determine o número total de elementos da amostra.

4. Uma população encontra-se dividida em três estratos, com tamanhos, respectivamente, n_1 =40, n_2 =100 e n_3 =60. Sabendo que, ao ser realizada uma amostragem estratificada proporcional, nove elementos da amostra foram retirados do 3º estrato, determine o número total de elementos da amostra.

	População		Amostra
N1	40	$0,15 \times 40 = 6$	6
N2	100	$0,15 \times 100 = 15$	15
N3	60	9/60 = 0,15	9
Total	200		30

RESPOSTA: 30 AMOSTRAS

5. Mostre como seria possível retirar uma amostra de 32 elementos de uma população ordenada formada por 2.432 elementos.

Na ordenação geral, qual dos elementos seria escolhido para pertencer à amostra, sabendo-se que o elemento de ordem 1.420 a ela pertence?

- a) 1648
- b) 290
- c) 725
- d) 2025
- e) 1120

5. Mostre como seria possível retirar uma amostra de 32 elementos de uma população ordenada formada por 2.432 elementos.

Na ordenação geral, qual dos elementos seria escolhido para pertencer à amostra, sabendo-se que o elemento de ordem 1.420 a ela pertence?

$$1420+76=1496+76=1572+76=1648+...$$

1	52	9	660	17	1268	25	1876
2	128	10	736	18	1344	26	1952
3	204	11	812	19	1420	27	2028
4	280	12	888	20	1496	28	2104
5	356	13	964	21	1572	29	2180
6	432	14	1040	22	1648	30	2256
7	508	15	1116	23	1724	31	2332
8	584	16	1192	24	1800	32	2408

Classifique as séries:

a)

Tabela a. Produção de borracha natural – 1991-1993

Anos	Toneladas
1991	29.543
1992	30.712
1993	40663

Fonte: IBGE

b)

Tabela b. Avicultura Brasileira - 1992

Anos	Número (1000 cabeças)
Galinhas	204.160
Galos, frangos, pintos	435.465
Codornas	2.488

Fonte: IBGE

EXERCÍCIOS — aula 6

Classifique as séries:

<u>a</u>)

Tabela a. Produção de borracha natural - 1991-1993

Anos	Toneladas
1991	29.543
1992	30.712
1993	40663

Histórica

Fonte: IBGE

Tabela b. Avicultura Brasileira - 1992

Tipo	Número (1000 cabeças)
Galinhas	204.160
Galos, frangos, pintos	435.465
Codornas	2.488

Específica

Classifique as séries:

c)

Tabela c. Vacinação contra a poliomielite - 1993

Região	Quantidade
Norte	211.209
Nordeste	631.040
Sudeste	1.119.708
Sul	418.785
Centro-oeste	185.823

Fonte: Ministério da Saúde

<u>d)</u>

Tabela e. Produção Brasileira de Aço Bruto 1991-1993

Processos	Quantidade (1.000 t)		
	1991	1992	1993
Oxigênio Básico	17.934	18.849	19.698
Forno Elétrico	4.274	4.639	5.065
EOF	409	448	444

Fonte: Instituto Brasileiro de Siderurgia

Classifique as séries:

c)

Tabela c. Vacinação contra a poliomielite - 1993

Kegião	Quantidade
Norte	211.209
Nordeste	631.040
Sudeste	1.119.708
Sul	418.785
Centro-oeste	185.823

Fonte: Min stério da Saúde

d)

Tabela e. Produção Brasileira de Aço Bruto 1991-1993

Processos		Quantidade (1.000 t)		
		1991	1992	1993
Oxigênio B	ísico	17.934	18.849	19.698
Forno Elétri	0	4.274	4.639	5.065
EOF		409	448	444

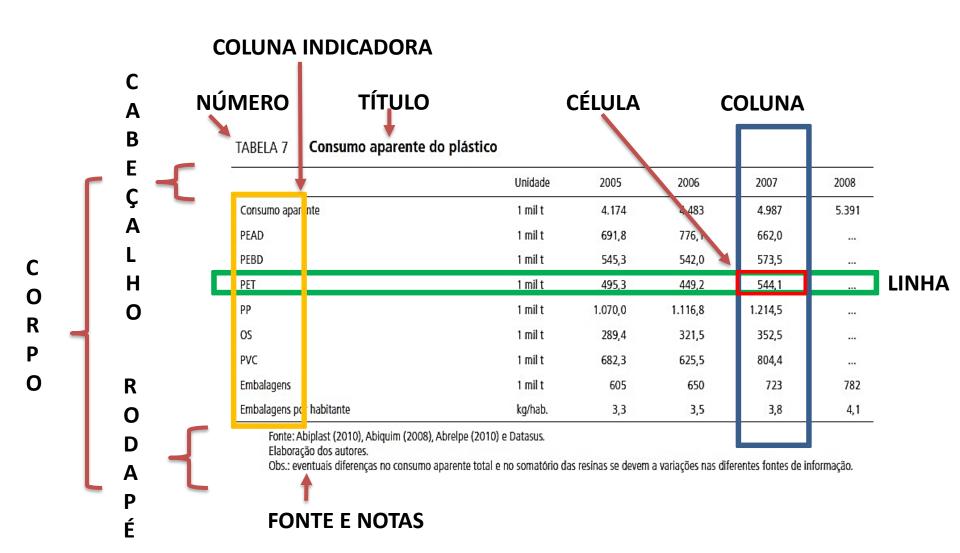
Fonte: Inglituto Brasileiro de Siderurgia

Geográfica

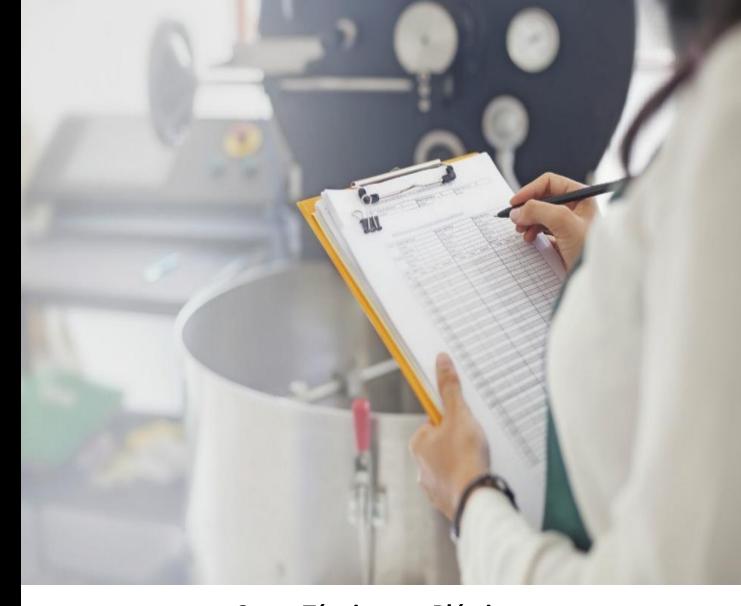
Conjugada específica-histórica

2. Verificou-se no Brasil em 1993, o seguinte movimento de importação de mercadorias: 14.839.804t no valor de US\$ 1.469.104, oriundas da Arábia Saudita, 10.547.889 dos EUA no valor de US\$ 6.034.946.000; e 561.024 t, do Japão, no valor de US\$1.518.843.000. Dados fornecidos pelo Ministério da Fazenda.

Organize a tabela e classifique a série.


Tabela 1 . Importação de Mercadorias no Brasil em 1993

País	Quantidade (t)	Valor (US\$)
Arábia Saudita	14.839.804	1.469.104
EUA	10.547.889	6.034.946.000
Japão	561.024	1.518.843.000


Fonte: Ministério da Fazenda

Série Geográfica

3. Desenhe uma tabela com dados fictícios indicando todos os seus elementos:

Estatística para a Qualidade

Curso Técnico em Plásticos Prof. Eveline Pereira Aula 8

Dados absolutos são aqueles que <u>são coletados de forma direta, sem manipulação senão contagem e medida</u>. A leitura de dados absolutos é inexpressiva e, embora traduzam um resultado exato e fiel , não ressaltam de imediato conclusões numéricas E. Daí se faz necessário o uso de dados relativos.

Dados relativos são resultados de comparações por quociente (razões) que se estabelecem entre dados absolutos a fim de realçar ou facilitar comparações entre quantidades ©

Dados Relativos são porcentagens, índices, quocientes e taxas.

Porcentagens: são de grande valia quando deseja-se destacar a participação da parte no todo

Ex.: → Calcule as porcentagens de alunos em cada nível:

Matrículas na escola da cidade A

Categoria	Número de Alunos
Ensino Fundamental	19.286
Ensino Médio	1.681
Ensino Superior	234
Total	21.201

→ Calcule as porcentagens de alunos em cada nível:

• EF: 19286/21201 = 0,909 = 0,91

• EM:1681/21201 = 0,079 = 0,08

• ES: 234/21201 = 0,011 = 0,01

Matrículas na escola da cidade A

Categoria	Número de Alunos	%
Ensino Fundamental	19.286	91
Ensino Médio	1.681	8
Ensino Superior	234	1
Total	21.201	100

Agora podemos dizer que apenas 1% dos alunos da cidade A estão matriculados no Ensino Superior

Matrículas na escola da cidade A

Categoria	Número de Alunos	%
Ensino Fundamental	19.286	91
Ensino Médio	1.681	8
Ensino Superior	234	1
Total	21.201	100

Exercício 1:

\rightarrow Resolva:

Qual das cidades tem, comparativamente maior número de alunos em cada nível de ensino?

Número de Alunos

Categoria	Cidade A	Cidade B
Ensino Fundamental	19.286	38.660
Ensino Médio	1.681	3.399
Ensino Superior	234	424
Total	21.201	42.843

Índices são razões entre duas grandezas tais quais <u>uma não</u> inclui a outra.

Ex.: Densidade demográfica = população/superfície

Receita per capita = receita/população

Coeficientes:

Os **coeficientes** são razões entre o número total de ocorrências e o número total (número de ocorrências e número de não ocorrências)

Ex.:

coeficiente de natalidade = N° de nascimentos/população total coeficiente de mortalidade = N° de óbitos/população total

Taxas:

As taxas são os coeficientes multiplicados por uma potência de 10 (10, 100, 1000...).

Ex.:

Taxa de mortalidade: coeficiente de mortalidade x 1000

Taxa de natalidade: coeficiente de natalidade x 1000

- 2. O Estado A apresentou 733.986 matriculas na 1º série, no início de 1994, e 683.816 no final do ano. O Estado B apresentou, respectivamente 436.127 e 421.457 matrículas. Qual estado apresentou maior % de evasão escolar?
- 3. Uma escola registrou em março 40 alunos e em dezembro apenas 35. Qual foi a taxa de evasão escolar?
- 4. Calcule a taxa de aprovação de um professor de uma classe de 45 alunos sabendo que 36 tiveram aprovação.

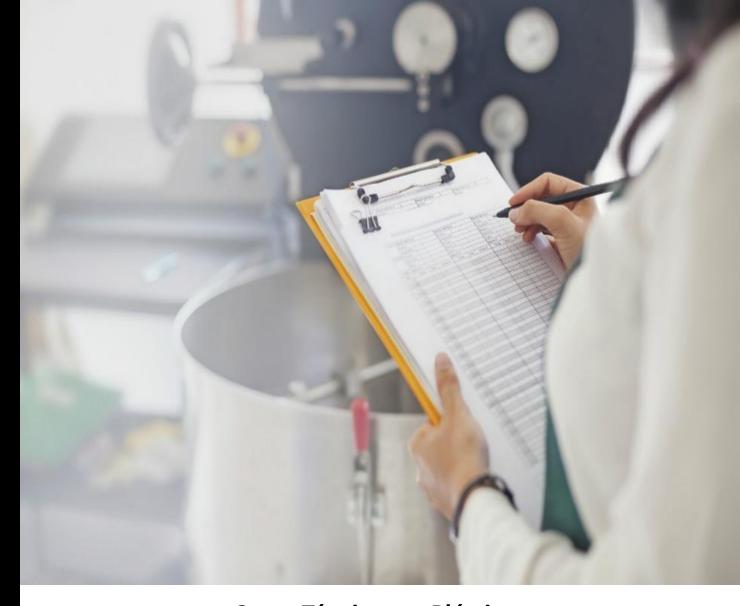
5. Considere a série abaixo e complete com uma casa decimal

Séries	Alunos Matriculados	%
1a	546	
2a	328	
3a	280	
<u>4</u> a	120	
Total		

- 6. Uma escola apresenta no final do ano o seguinte quadro:
- a) Calcule o % de evasão por série:
- b) Calcule o % de evasão da escola:

	Alunos Matriculados	
Séries	Março Novembro	
<u>1</u> a	480	475
2a	458	456
3a	436	430
	420	420
Total	1794	1781

7. Considere a tabela abaixo e complete:


Tabela 6. Evolução das Receitas do Café Industrializado		
Meses	Valor (US\$ milhões)	%
Jan	33,3	
Fev	54,1	
Mar	44,5	
Abr	52,9	
Total	184,8	

Fonte: Fictícia

8. São Paulo tinha, em 1992, uma população e 32.182,7 mil habitantes. Sabendo que sua área é de 248.256km2, calcule a densidade demográfica.

8. Uma frota de 40 caminhões, transportando cada um 8 toneladas, dirige-se a duas cidades A e B. Na cidade A são descarregados 65% dos caminhões, por 7 homens que trabalharam por 7 horas. Na cidade B, 4 homens em 5 horas descarregaram o restante. Em que cidade se obteve a melhor produtividade?

Estatística para a Qualidade

Curso Técnico em Plásticos Prof. Eveline Pereira Aula 9

GRÁFICOS ESTATÍSTICOS

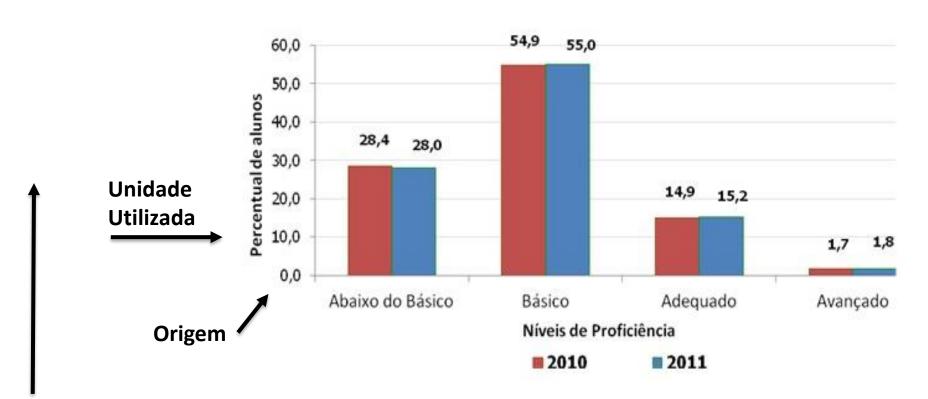
O gráfico estatístico é uma forma de apresentação dos dados estatísticos, cujo objetivo é produzir uma rápida impressão do fenômeno em estudo, visto que os gráficos falam mais rápido à compreensão que as séries.

Por serem eficientes, os gráficos são amplamente utilizados na apresentação de resultados de uma variável em estudo.

GRÁFICOS ESTATÍSTICOS

A representação gráfica de um fenômeno deve obedecer a alguns princípios fundamentais:

- a) Simplicidade: o gráfico deve ser destituído de informações e linhas desnecessárias que possam levar o observador a uma análise morosa
- **b)** Clareza: deve possibilitar uma correta intepretação dos valores representativos do fenômeno em estudo
- c) Veracidade: o gráfico deve expressar a verdade sobre o fenômeno em estudo

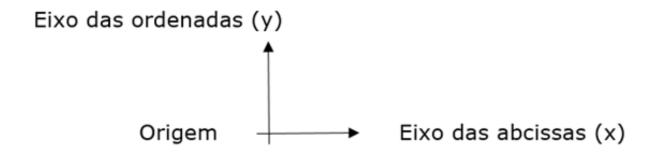

GRÁFICOS ESTATÍSTICOS

Alguns princípios de estética e de bom gosto devem estar presentes:

- 1. É necessário que o gráfico apresente o título e subtítulos;
- 2. A <u>orientação</u> dos gráficos deve ser <u>da esquerda para a direita</u> <u>e de baixo para cima</u>;
- 3. Sempre que possível, <u>deve aparecer o valor 0 (zero), que indica a origem</u>;
- 4. As <u>unidades utilizadas</u> para representar o fenômeno devem estar expressas no gráfico;
- 5. Deve-se <u>manter uma certa proporcionalidade</u> entre os eixos, de modo que a linha das ordenadas corresponda, no máximo, a 80% da abscissa.

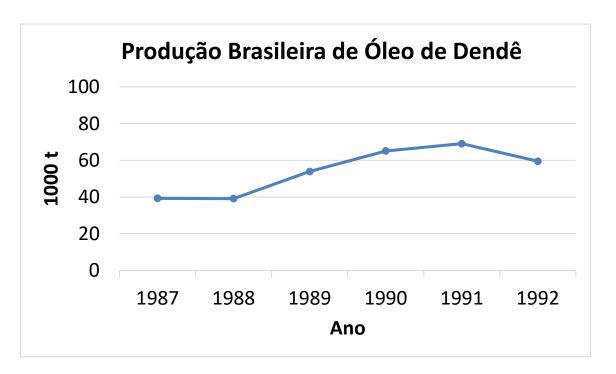
Comparação da distribuição dos alunos de 9º ano do EF nos níveis de proficiência em língua portuguesa (2010 e 2011)

Orientação da esquerda para a direita e de baixo para cima

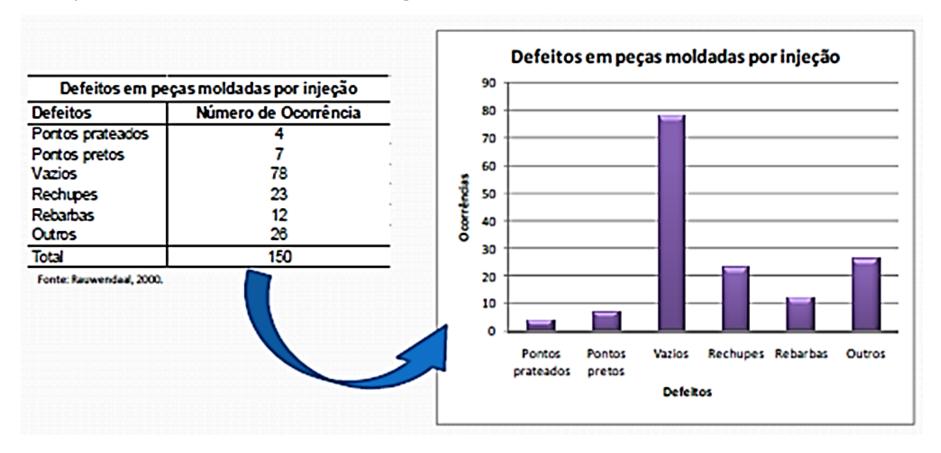

*Proporcionalidade

Os principais gráficos são:

- Diagramas
- Cartogramas
- Pictogramas


I - Diagramas:

São gráficos geométricos de, no máximo, duas dimensões; para sua construção fazemos uso do plano cartesiano

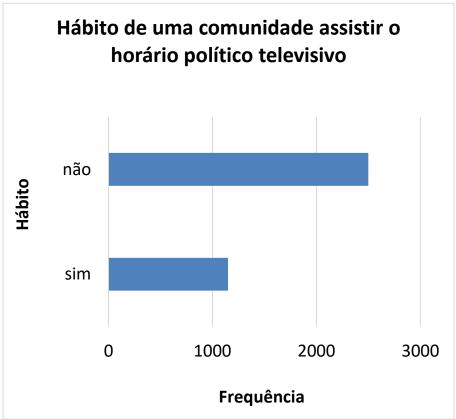

Entre os principais digramas temos:

a) Gráficos de linha: utilizam uma linha poligonal para representar a série estatística. São utilizados para exibir tendências ao longo do tempo

Para construir um gráfico de linhas basta relacionar abcissas e ordenadas ligando os pontos dois a dois, após ligam-se os pontos traçados no plano cartesiano formando uma linha

b) Gráfico de Barras ou Colunas: A série é representada por barras que podem ser dispostas verticalmente (colunas) ou horizontalmente (barras). São utilizados para comparar valores em diversas categorias

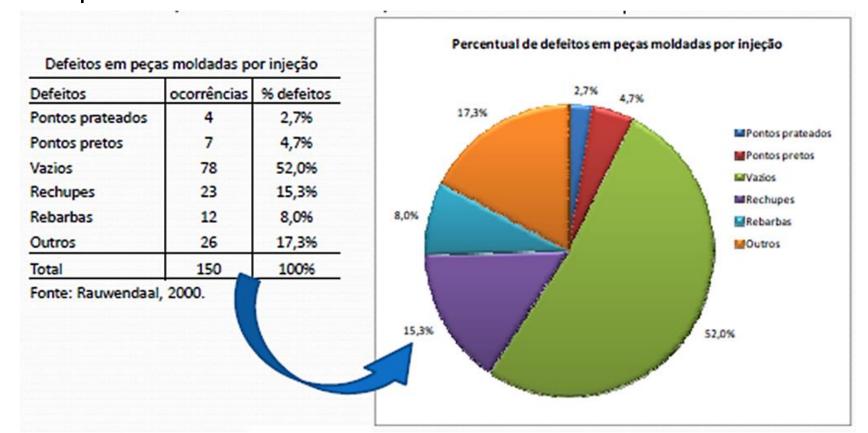

Exercício:


→ Construir um gráfico de barras e um de colunas para a série abaixo:

HÁBITO DE UMA COMUNIDADE ASSISTIR O HORÁRIO POLÍTICO TELEVISIVO

HÁBITO	Frequência			
SIM	1150			
NÃO	2500			

Resposta:



Notas:

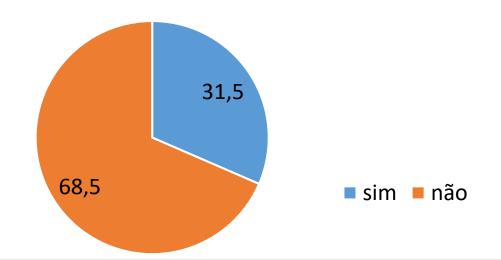
- Se os dizeres a serem escritos são extensos, dê preferência para as barras;
- Utilizar sempre ordem cronológica se a série for histórica
- Por questões estéticas a distância máxima entre as barras/colunas não deve menor que metade da sua largura.

c) Gráfico de Setores ou Pizza: Facilitam a compreensão especialmente quando tratam de dados percentuais. Exibem a contribuição de cada valor em relação ao total. Usados quando os valores podem ser somados.

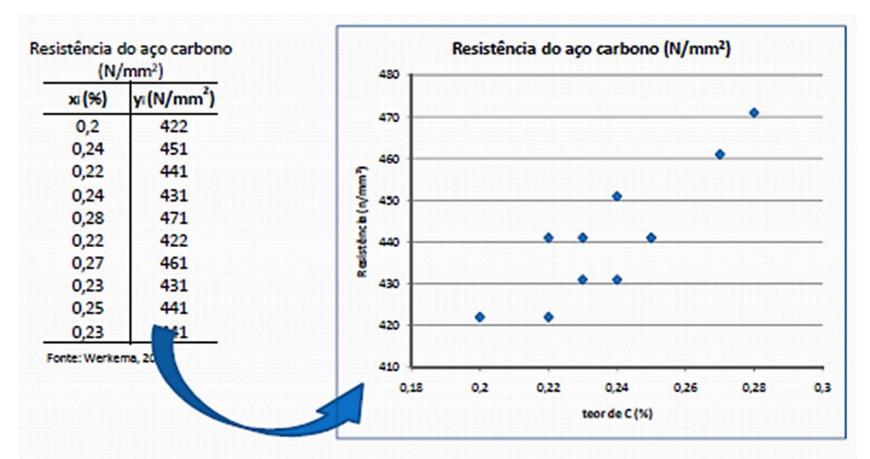
Exercício:

→ Construir um gráfico de pizza para a série abaixo:

HÁBITO DE UMA COMUNIDADE ASSISTIR O HORÁRIO POLÍTICO TELEVISIVO


HÁBITO	Frequência			
SIM	1150			
NÃO	2500			

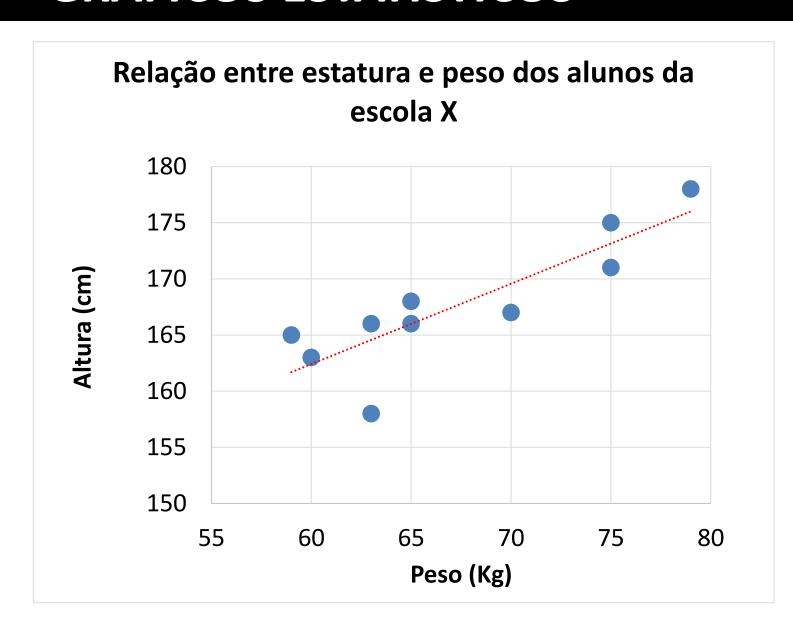
Resposta:


HÁBITO DE UMA COMUNIDADE ASSISTIR O HORÁRIO POLÍTICO TELEVISIVO

HÁBITO	Frequência		%
SIM	1150	0,315	31,5
NÃO	2500	0,685	68,5
TOTAL	3650	1	100

Hábito de uma comunidade assistir o horário político televisivo (%)

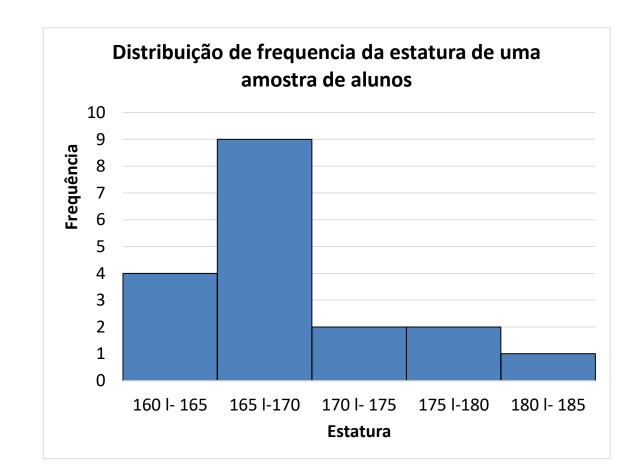
d) Gráfico de Dispersão: São usados para comparar pares de valores e possibilitam a verificação de tendências e a presença ou não de valores extremos


Exercício

→ Construir um gráfico de dispersão para a série abaixo:

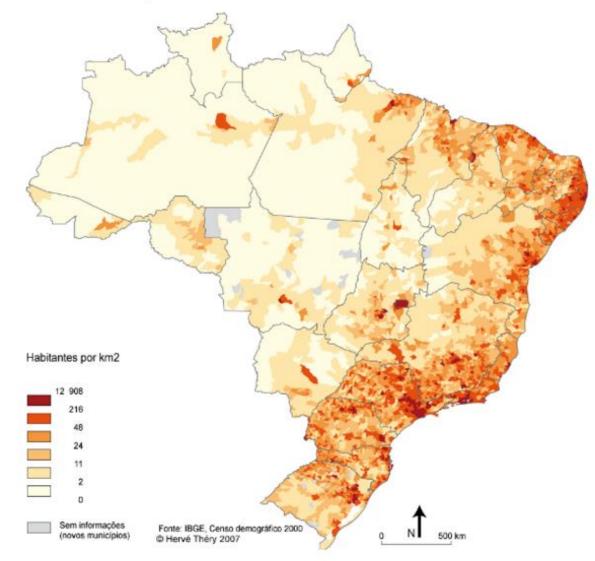
RELAÇÃO ENTRE ESTATURA E PESO DOS ALUNOS DA ESCOLA X

PESO	Estatura
79	178
59	165
63	158
70	167
63	166
75	171
60	163
75	175
65	166
65	168


Resposta:

e) Histograma: No histograma é possível verificar as ocorrências (frequência) de uma variável em estudo, segundo intervalos de classe organizados. Permite a verificação de distribuição dos dados, se é simétrica ou assimétrica.

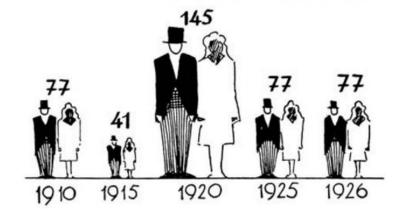
Distribuição de frequência da estatura de uma amostra de alunos


Estatura	Frequência				
160l-165	4				
165l-170	9				
170l-175	2				
175I-180	2				
180l-185	1				

II - Cartogramas:

O cartograma é a representação sobre uma carta geográfica.
O objetivo é relacionar as regiões e os dados estatísticos

Densidade de povoamento


III – Pictogramas:

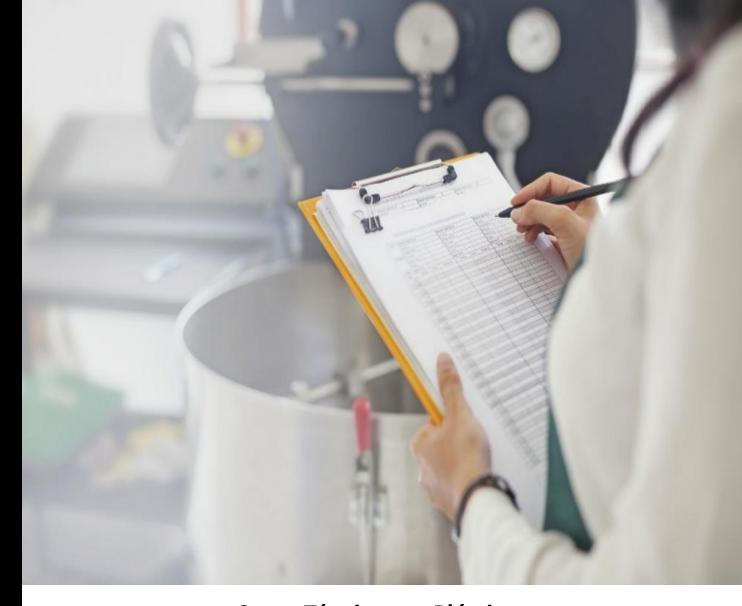
Constitui um dos processos gráficos que melhor fala ao público devido a sua forma atraente e sugestiva onde a representação gráfica é realizada pelo uso de figuras.

Example of bad system: signs of different sizes

Number of men getting married in Germany out of every 10,000 persons

ATIVIDADE AVALIATIVA: Peso 4

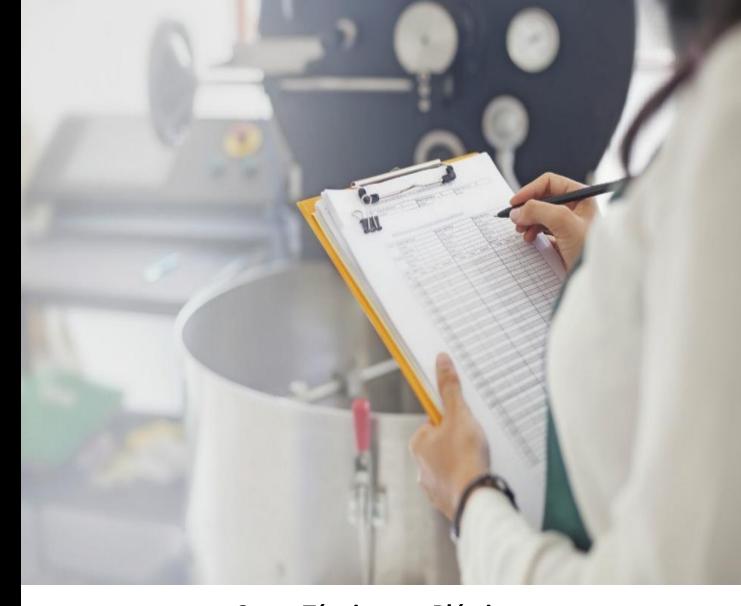
- 1. Organizar uma tabela e coletar os seguintes dados da turma:
- Alunos: (1,2,3...)
- Idade: (em meses)
- Sexo:
- Altura:
- Status de relacionamento:
- Time que torce:
- Escolher mais 5 dados para estudo estatístico (pesquisar qualquer item de interesse, os grupos não devem repetir perguntas!!!)
- 2. Organizar os dados coletados em gráficos:
- Idade: Gráfico de Colunas
- Sexo: Gráfico de Pizza
- Altura: Histograma
- Status de Relacionamento X Idade: Gráfico de Dispersão
- Time que torce: Pictograma
- Outras 5 questões: o grupo deverá decidir qual é o gráfico mais adequado para o dado estudado (não utilizar somente um tipo de gráfico para todas as questões!)


Os gráficos deverão ser desenhados a mão (podem utilizar colagens), cada gráfico deverá ser desenhado em uma cartolina. É permitido utilizar frente e verso da cartolina.

No dia <u>12/04/17</u> todos os grupos formados por 4 elementos <u>apresentarão seus gráficos e deverão</u> <u>comentar sobre os resultados encontrados e</u> interpretá-los, explicando-os para a turma.

Serão avaliados:

- Entrega no prazo
- Realização da totalidade da atividade proposta
- Capricho e organização
- Domínio do conteúdo
- Participação de todos os membros do grupo
- Respeito aos princípios de elaboração dos gráficos


Obs: Os alunos terão: 1 aula para coletar os dados e organizar a tabela que irá gerar os gráficos 5 aulas para a produção dos gráficos (trazer o material necessário: cartolina, canetinha, cola, papel, régua, etc.)

Curso Técnico em Plásticos Prof. Eveline Pereira Aula 10 – 22/03

ATIVIDADE AVALIATIVA: Organização da tabela e Coleta de Dados da turma – Ex:

Aluno	Idade (meses)	Sexo	Atura (cm)	Status Relacionamento	Time	1	2	3	4	5
1	192	M	178	Namorando	Grêmio					
2	195	F	168	Solteiro	Inter					
3	198	F	172	Ficando	Juventude					
•••										
27										

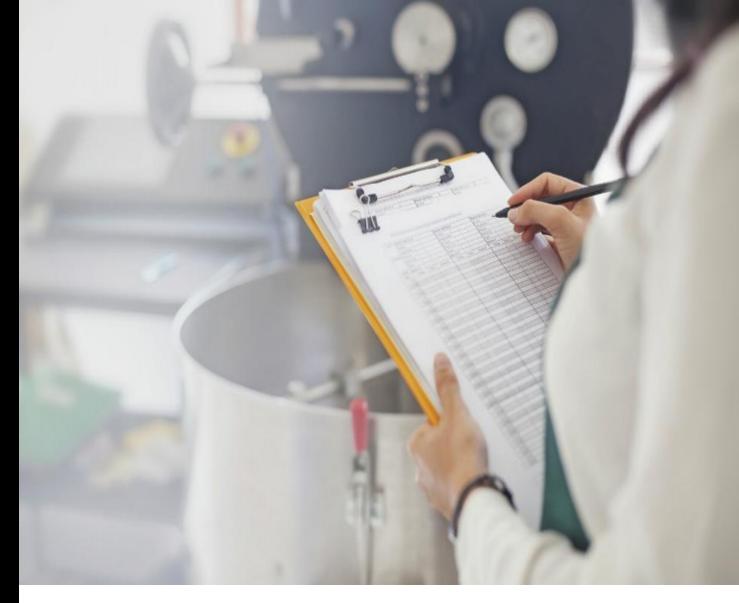
Curso Técnico em Plásticos Prof. Eveline Pereira Aula 11 – 24/03

ATIVIDADE AVALIATIVA:

Produção dos Gráficos

Curso Técnico em Plásticos Prof. Eveline Pereira Aula 12 – 29/03

ATIVIDADE AVALIATIVA:


Produção dos Gráficos

Curso Técnico em Plásticos Prof. Eveline Pereira Aula 13 – 31/03

ATIVIDADE AVALIATIVA:

Produção dos Gráficos

Curso Técnico em Plásticos Prof. Eveline Pereira Aula 14 – 05/04

ATIVIDADE AVALIATIVA:

Produção dos Gráficos

Para alunos que não irão à feira: Tempo em aula para produção dos gráficos

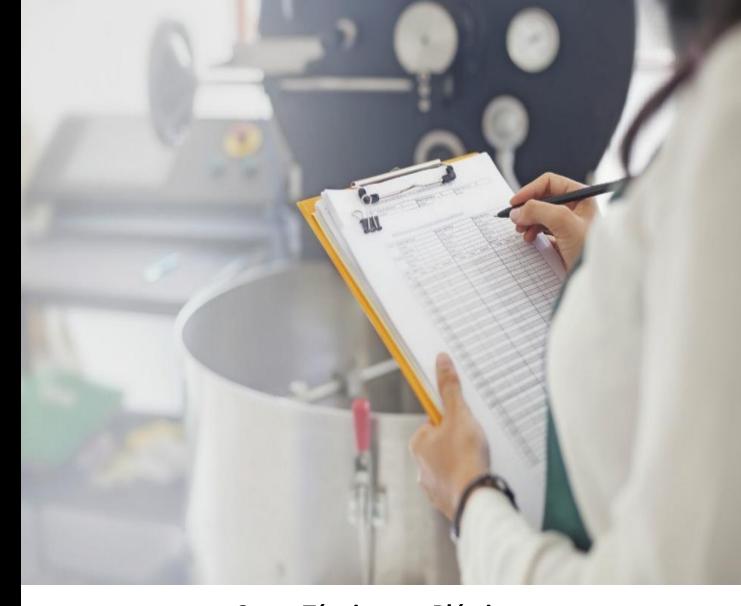
Alunos que irão à feira: Produção dos gráficos em casa

Curso Técnico em Plásticos Prof. Eveline Pereira Aula 15 – 07/04

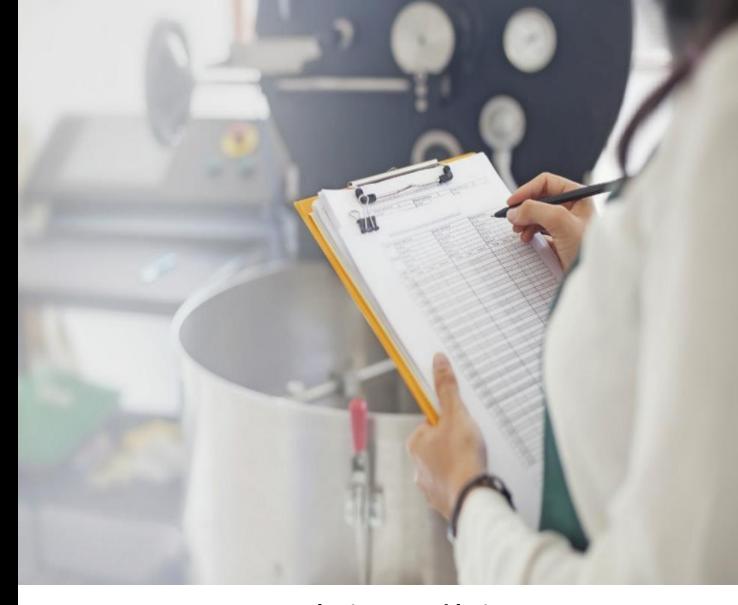
ATIVIDADE AVALIATIVA:

Produção dos Gráficos

Para alunos que não irão à feira: Tempo em aula para produção dos gráficos


Alunos que irão à feira: Produção dos gráficos em casa

Curso Técnico em Plásticos Prof. Eveline Pereira Aula 16 – 12/04


ATIVIDADE AVALIATIVA:

Apresentação dos Gráficos da Turma

Curso Técnico em Plásticos Prof. Eveline Pereira Aula 17 – 14/04

Revisão para Avaliação:

Curso Técnico em Plásticos Prof. Eveline Pereira Aula 18 – 19/04

Avaliação escrita individual