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In this chapter we discuss three common and important stretch or extensional 
flow-based shaping operations: melt fiber spinning, tubular film blowing, and blow 
molding. These operations take place downstream from the die. Another stretch-flow–
type shaping method is thermoforming, which involves deformation of previously 
shaped polymer sheets or films into a desired shape. Since the principles of 
thermoforming are very similar to those of parison inflation discussed later in this 
chapter, we do not dwell on this shaping method. 

Fiber spinning is a uniaxial extensional deformation process, which is the 
principal method of manufacturing synthetic fibers for the textile industry. It also 
provides a good example of the enormous significance of ‘‘structuring’’ polymeric 
chains during shaping for imparting unique properties to a product. In fact, fiber 
spinning is the quintessential example of the goal of modern polymer processing as a 
multidisciplinary activity, better termed ‘‘macromolecular engineering,’’ whose objective, 
as discussed in Chapter 1, is: ‘‘to bridge the gap between science and technology in 
material processing using modeling and computation of the full thermo mechanical 
history during formation to quantitatively predict properties’’ (1). 

Film blowing and blow molding are shaping operations that produce most 
plastics films, bags, and bottles, respectively. Both processes involve two-dimensional 
elongational deformation of the polymer melt. Thermoforming is a versatile, relatively 
inexpensive shaping method used extensively for packaging applications, which also 
involves two-dimensional extensional deformation. In all these processes, the purpose 
of a mathematical analysis is to describe the kinematics and dynamics of the process, 
to predict the nature and source of instabilities that are characteristic of these 
unconfined deformation processes, and, as just stated, hopefully predict a priori final 
properties based on the thermal and deformational history. 
 
14.1 FIBER SPINNING 

Until the 20th century mankind was limited to natural fibers such as wool, 
cotton, linen, and for the rich, silk. The first man-made fiber was artificial silk rayon 
(1910), which was based on cellulose. The big jump came with the invention of nylon 
by Wallace Carothers, with commercial production starting in 1939, followed in the 
1950s by acrylics (which, when mixed with cotton, produced the ‘‘wash-and wear’’ 
textiles), polyesters, and many others. 
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Fig. 14.1 (a) Schematic representation of the melt fiber spinning process. (b) Photograph of a spinneret. 

[Fiber-world Classroom Website.] 

 

The melt spinning of fibers begins with the melting and pumping of solid pellets 
by a screw extruder (normally followed by a gear pump for accurate flow-rate control) 
into a die with multiple holes called a spinneret. The extruded strands are drawn and 
the solidified fibers are wound up and subsequently cold-drawn further, as shown 
schematically in Fig. 14.1(a). The design of a commercial spinneret is shown in 
Fig.14.1(b). In addition to melt spinning, there are two other spinning methods: wet 
spinning, in which the polymer is dissolved in a solvent and extruded through a 
spinneret immersed in a chemical solution, and dry spinning, which also extrudes a 
solution of the polymer the solvent of which evaporates upon exiting the spinneret. 
These are used for polymers that cannot be melt-spun. However, in this chapter we 
discuss only the ubiquitous and most commercially important melt spinning. 

In analyzing the melt spinning process, we consider a single strand as it 
emerges from the spinneret and is drawn by the take-up roll, as shown in Fig. 14.2. 
There is no clear point of demarcation where post–die extrudate swelling ends and 
melt stretching begins. The two phenomena occur simultaneously, especially near the 
die exit, where the rapid rate of swelling ordinarily occurs. Experimental data from 
actual melt-spinning runs indicate that the melt strand cross-sectional area decreases 
hyperbolically from the spinneret exit to the take-up rolls (2). Figure 14.3 gives typical 
melt strand area and radius axial profiles. The melt drawdown region extends to about 
200 cm from the spinneret exit. There is no specific indication of where the melt strand 
begins to solidify (‘‘frost line’’). 

The final properties of the fiber, such as tenacity,¹ modulus, luster, and flex loss, 
are determined by the spinning process. This is because, as the molten filament moves 
from the spinneret exit to the take-up roll, it is simultaneously stretched and cooled, 
thus orienting the polymer chains (Fig. 14.4) and crystallizing the polymer; this is 
repeated with the subsequent   drawing and orientation in the solid sate. Therefore, the                 

___________________ 
1. Tenacity equals the breaking strength (grams) divided by denier. Denier is the weight in grams of 9000 
meters of filament. 
 



spinning process is, in fact, not only a fiber forming step, but a ‘‘structuring’’ one as 
well. Early work on structuring during fiber spinning was done by Dees and Spruiell (3), 
who studied structure development with linear high density polyethylene fiber spinning 
and modeled it as shown in Fig. 14.5. They reported that the observed orientation 
function behavior during melt spinning can be explained with a morphological model, 
assuming that at low spin line stresses or take-up velocities, spherulitic structures are 
obtained. Increasing the take-up velocity results in row nucleated twisted lamellae, and 
at even higher speeds, in row nucleated untwisted lamellae. 
 

 
 

Fig. 14.4 Schematic view of orientation development along the spin line. 
 

Crystallization during melt spinning of linear polyethylene 

 
 

Fig. 14.5 Morphological model of structures developed in as-spun HDPE. Take-up velocities are 
(a) very low; (b) low; (c) medium; and (d) high. [Reprinted by permission from J. E. Spruiell and 
J. L. White, ‘‘Structure Development during Polymer Processing: Studies of the Melt Spinning of 

Polyethylene and Polypropylene Fibers,’’ Polym. Eng. Sci., 15, 660 (1975).] 
 
 
 
 



 
 
 

Fig. 14.6 Schematic stress–strain curves for a semicrystalline polymer. The shape of tensile 
specimens at several stages is indicated. [Reprinted by permission from J. M. Schultz, Polymer 

Materials Science, Prentice Hall, Englewood Cliffs, NJ, 1974.] 
 

As noted in Fig.14.1(a), commercial fibers of semicrystalline polymers are 
always cold-drawn after spinning to achieve further structuring through further 
macromolecular orientation and crystalline morphological changes, many of which are 
retained because of the low temperature of the cold-drawing processes. A typical 
stress–strain curve for a polycrystalline polymer at a temperature Tg < T < Tm appears 
in Fig. 14.6. 

The onset of yielding and necking of fibers, as well as films and tensile bar 
specimens, is the result of the ability of polycrystalline ‘‘composites’’ to accommodate 
stress-induced destruction of the crystalline units. In this process both the amorphous 
and the crystalline phases are involved. A ‘‘molecular’’ descriptive model of the 
morphological changes initiated with necking, and propagated by cold drawing, 
indicated in Fig. 14.7, consists of the following steps: 
 
1. The lamellae slip rigidly past one another. Lamellae parallel to the direction of draw 
cannot slip; thus, spherulites become anisotropic. At this stage, at which necking 
begins, the strain is accommodated almost entirely by the interlamellar amorphous 
component. 
2. Since the amorphous ‘‘ties’’ are almost completely extended, slip-tilting of the 
lamellae is induced. 
3. Lamellar breakup occurs through chain pulling and unfolding; the chains pulled still 
connect the fragments of the lamellae. 
4. The lamellar fragments slip further in the direction of draw and become aligned. 
They now form fibrils of alternating crystal blocks and stretched amorphous regions, 
which may also contain free chain ends, and some chain folds. Thus, the lamellae 
break into fragments that end up stacked in the axial direction. Tie molecules that 
connect these fragments in the draw direction provide the strength of the microfibrils in 
the fiber. Thus the goal in a fiber structuring operation is to employ the values of the 
parameters of spinning and drawing processes, which increase the fraction of tie 
molecules. 
 
 
 



 
 

Fig. 14.7 Steps in the deformation of semicrystalline fiber, shown schematically. [Reprinted by 
permission from J. M. Schultz, Polymer Materials Science, Prentice Hall, Englewood Cliffs, NJ, 1974.] 

 

It is evident from the preceding that the important cold drawing variables are not 

only the rate of extension, determining  , and the temperature; determining the 

relaxation time, λ, but also the initial crystalline morphology, that is, the morphology 
obtained during the spinning process (see Fig. 14.5). Capaccio and Ward (4) 
demonstrated the important role played by the initial crystalline morphology in obtaining 
ultrahighly drawn and ultrahigh stiffness high density polyethylene (HDPE) fibers and 
films. A HDPE of Mn - 13,350 and Mw - 67,800, cooled from 160ºC and quenched at 
110ºC, possessed an initial morphology such that, when drawn at 75ºC at 10 cm/min, it 
can be extended to a draw ratio of 30. The cold-drawn sample had a specific Young’s 
modulus in tension E – 68 x 109 N/m², an order of magnitude higher than of 
conventionally drawn HDPE. For comparison, ‘‘E’’ glass fibers have a specific Young’s 
modulus of 35 (N/m²) and Kevlar fibers, 92 (N/m²). It should be noted, however, that 
the theoretical estimates of Young’s modulus for fully extended HDPE chains range 
from 240N/m² to 350 N/m² (4). Thus, further structuring improvements are possible, in 
principle. 

The mathematical formulation of the fiber-spinning process is meant to simulate 
and predict the hydrodynamics of the process and the relationship between spinning 
conditions and fiber structure. It involves rapid extensional deformation, heat transfer to 
the surrounding quenching environment, air drag on the filament surface, crystallization 
under rapid axial-orientation, and nonisothermal conditions. 
 

Example 14.1 A Semiempirical, Simplified, One-Dimensional, 
Nonisothermal Model [C. D. Han, Rheology in Polymer Processing, Academic 
Press, New York, 1976, Section 12.3.1.] Assuming steady state and further 
assuming that there is only one nonvanishing velocity component v(z), which is 
a function of only z, and that temperature varies only in the z direction, the 
equation of motion reduces to 
 

 



where G - ρπR²vz is the mass flow rate and FD is the air drag force per unit area given 
by: 
 

 
 
indicating that extension rate is controlled by tensile stresses, air drag on the fiber, and 
gravitational forces. Similarly, the equation of energy reduces to 
 

 
 

In this equation, h is the heat transfer coefficient given by 
 

 
 

where K is an adjustable parameter and the subscript a refers to ambient air. According 
to Eq. E14.1-3 the temperature drop of the fiber depends on heat transfer to the 
ambient air and radiation losses. Han coupled these transport equations with an 
empirical ‘‘Power Law in tension’’ constitutive equation containing a temperature-
dependent viscosity 
 

 
 

where 
 

 
 

Many of the early models were one-dimensional, in which the field equations 
were averaged over the filament cross section. Kase and Matsuo (5,6) were the first to 
consider nonisothermal (in the stretching direction) fiber stretching. Matovich and 
Pearson (7) studied Newtonian, shear thinning and second order fluids. Denn at al. 
(8,9) modeled the process with upper-convected Maxwell constitutive equation. 
Papanastasiou et al. (10) studied isothermal viscoelastic spinning. Bell and Edie (11), 
using a finite element method (FEM), computed the two-dimensional temperature 
profile, assuming a one-dimensional velocity profile and measures of orientation, to 
obtain the internal stress distribution (12). The single component models were 
extended by Kulkarni and Beris (13) and Doufas et al. (14) to two component models, 
accounting for stress-induced crystallization. 

A detailed two-dimensional numerical analysis of nonisothermal spinning of 
viscoelastic liquid with phase transition was carried out recently by Joo et al. (15). They 
used a mixed FEM developed for viscoelastic flows (16) with a nonisothermal version 
of the Giesekus constitutive equation (17), the Nakamura et al. (18) crystallization 
kinetics model, and the dependence of the crystallization rate on temperature and 
molecular orientation according to Ziabicki (19). They simulated amorphous 
polystyrene and fast-crystallizing nylon-6.6. The results indicate that although the 
kinematics in the thread line are approximately one-dimensional, as assumed by most 
researchers, the significant radial temperature nonuniformity leads to radially 



nonuniform viscoelastic stresses, which result in radially nonuniform molecular 
orientation and strong radial variation of crystallinity. 

The polystyrene simulation followed the experiments of Bell and Edie (12) with 
good agreement. Figure 14.8 shows the simulation results for fiber spinning nylon-6.6 
with a draw ratio of 40. The figure demonstrates the wealth of information provided by 
the model. It shows the velocity, temperature, axial normal stress, and crystallinity 
fields along the threadline. We see the characteristic exponential-like drop in diameter 
with locally (radially) constant but accelerating velocity. However, results map out the 
temperature, stress, and crystallinity fields, which show marked variation radially and 
axially. 

Recent advances in molecular dynamics simulations enabled Levine et al. (20) 
to take modeling one step further, to the molecular level. They succeeded in simulating 
from first principles the structure formation of 100 carbon atom polyethylene during 
uniaxial extension, under a variety of conditions. Figure 14.9 shows the dynamics of 
extensional deformation below the melting point, beautifully indicating the dynamic 
development of orientation and order. 

Figure 14.10 shows the simulation results of nonisothermal crystallization, 
during simultaneous deformation and cooling through the melting point, as is the case 
in fiber spinning, indicating the formation of homogeneous, deformation-induced 
crystallization nuclei. 

The foregoing analyses show, as pointed out earlier, that fiber spinning is 
perhaps the first process approaching the goal of modern polymer processing as 
macromolecular engineering. That is, developing a multiscale approach to simulate 
manufacturing processes using the governing continuum-level equations and operating 
conditions. Material-specific parameters for those equations are generated from 
molecular dynamics simulations, to ensure consistent, predictive ability. Crystal growth 
rates are generated using parameters derived entirely from first principles molecular 
modeling, over a large range of temperatures and molecular weight. This is shown 
schematically in Fig. 14.11. 

So far, we assumed that the spinning process is stable. In practice, however, 
spinning instabilities may constrain spinning rates and even curb the possibility of 
spinning a fiber. Indeed, not all polymers can be melt-spun. Some polymers are easier 
to spin than others. The spinnability of a polymer is related to the stability of the 
process (21,22), particularly the ability of polymer melts to be drawn without breaking, 
due to either capillary failure resulting from surface tension–induced breakup into 
droplets, ‘‘necking’’ and ductile failure (23) characteristic to extension-thinning 
polymers, and/or cohesive fracture (24,25) exhibited by extension-thickening polymers. 

A typical instability is draw resonance. Physically, the occurrence of draw 
resonance can be viewed as follows. In the region between the spinneret exit and the 
take-up rolls there can be a time variation of the total extrudate mass: although the rate 
of mass entering this region is constant, the rate it leaves is not controlled, since only 
the take-up speed is regulated, not the fiber diameter. Thus, if the strand thins out near 
the take-up rolls, the diameter of the strand above it will increase, creating (from the 
spinneret exit) a thick–thin strand. But the thick portion soon reaches the take-up rolls. 
Mass leaves the region at a high rate and the strands thin out upstream, creating a 
thin–thick strand. The process can repeat itself. This may explain the experimental 
reports that if solidification occurs before the take-up rolls, no resonance is observed 
(26), as well as the observation of increased resonance period with increased 
residence time in the spinline (21). 
 
 
 
 
 
 



 
 

Fig. 14.8 Simulation results for velocity, temperature, axial normal stress, and crystallinity fields 
for low-speed spinning of nylon-6.6. [Reprinted with permission from Joo et al., ‘‘Two-dimensional 

Numerical Analysis of Nonisothermal Melt Spinning with and without Phase Transition,’’ J. Non Newt. Fluid 
Mech., 102, 37–70 (2002).] 

 
 
 
 
 



 
 

Fig. 14.9 Snapshots of a system of twenty 100 carbon atom long polyethylene chains deformed at 
300 K. The initial slab at the top rapidly deforms with the applied stress in the x dimension of the 

slab, roughly doubling in the first 500 ps to λ - 2.64 (second image from the top); then the rate of 

deformation is slower and doubles again in 1500 ps to λ - 5.15 (third image from the top). Beyond 

this point the cell deforms even more slowly to reach a final deformation of λ - 6.28 (bottom 
image). In absolute values, the initial cell of dimensions 1.88 x 5.32 x 5.32 nm deforms to 
11.8 x 2.23 x 1.96 nm. [Reprinted by permission from M. C. Levine, N. Waheed, and G. C. 
Rutledge, ‘‘Molecular Dynamics Simulation of Orientation and Crystallization of Polyethylene 

during Uniaxial Extension,’’ Polymer, 44, 1771–1779, (2003).] 
 

Isothermal draw resonance is found to be independent of the flow rate. It occurs 
at a critical value of draw ratio (i.e., the ratio of the strand speed at the take-up rolls to 
that at the spinneret exit). For fluids that are almost Newtonian, such as polyethylene 
terephthalate (PET) and polysiloxane, the critical draw ratio is about 20. For polymer 
melts such as HDPE, polyethylene low density (LDPE), polystyrene (PS), and PP, 
which are all both shear thinning and viscoelastic, the critical draw ratio value can be 
as low as 3 (27). The maximum-to-minimum diameter ratio decreases with decreasing 
draw ratio and decreasing draw-down length. 

The experimental and theoretical literature on instabilities in fiber spinning has 
been reviewed in detail by Jung and Hyun (28). The theoretical analysis began with the 
work of Pearson et al. (29–32), who examined the behavior of inelastic fluids under a 
variety of conditions using linear stability analysis for the governing equations. For 
Newtonian fluids, they found a critical draw ratio of 20.2. Shear thinning and shear 
thickening fluids exhibit critical draw ratios that are smaller or larger, respectively, than 



20.2. At the same time, Denn et al. (8,33–36) systematically carried out both 
infinitesimal (linearized) and finite amplitude analyses of the isothermal draw 
resonance problem. They found that Newtonian fluids are stable to finite amplitude 
disturbances for draw ratios of less than 20.2. Linearized stability analysis revealed that 
for fluids that obey a White–Metzner-type constitutive equation, the critical draw ratio 
depends on the Power Law index n and the viscoelastic dimensionless number N 
 

 
 

where s = 1/n, L is the spinline length, G is the tensile modulus, and V0 is the spinneret 
velocity. The results appear in Fig. 14.12. Of interest is the ‘‘nose’’ region of the curves, 
which indicates that one could eliminate the draw resonance phenomenon by an 
increase in the draw ratio. Also of interest is the work of Han (37), who finds 
experimentally that as the temperature level is decreased in isothermal spinning, draw 
resonance occurs at lower draw ratios. This seems reasonable from the figure. In the 
‘‘nose’’ region, decreasing the temperature increases G and decreases m, which in turn 
decreases N, bringing about lower draw ratio values. 
 

 
 

Fig. 14.10 Chain configurations from a nonisothermal deformation simulation. From top to 
bottom, the images were taken at 374, 368, 364, 360 K, and 290 K, corresponding to 7.6, 8.2, 

8.6, 9.0, and 16.0 ns. [Reprinted by permission from M. C. Levine, N. Waheed, and G. C. 
Rutledge, ‘‘Molecular Dynamics Simulation of Orientation and Crystallization of Polyethylene 

during Uniaxial Extension,’’ Polymer, 44, 1771–1779, (2003).] 
 



 
 

Fig. 14.11 Schematic representation of fiber spinning process simulation scheme showing the 
multiple scale simulation analysis down to the molecular level. This is the goal of the Clemson 
University–MIT NSF Engineering Research Center for Advanced Engineering Fibers and Films 

(CAEFF) collaboration. CAEFF researchers are addressing fiber and film forming and 
structuring by creating a multiscale model that can be used to predict optimal combinations of 

materials and manufacturing conditions, for these and other processes. 
 

White et al. (38,39) presented experimental and theoretical (isothermal linear 
stability analysis) results that indicate the following: first, that polymer melts respond 
similarly to uniform elongational flow and to melt spinning; second, that polymers 

whose elongational viscosity  increases with time or strain result in a stable 
spinline, do not exhibit draw resonance, and undergo cohesive failure at high draw 
ratios. A prime example of such behavior is LDPE. On the other hand, polymer melts 

with a decreasing  exhibit draw resonance at low draw ratios and break in a 
ductile fashion (after ‘‘necking’’) at high draw ratios. Typical polymers in this category 
are HDPE and PP. 

The preceding analyses were based on steady state solution of the governing 
equations, and examining the response of the system to applied sinusoidal 
perturbations. However, for the study of the dynamics of the instability, and for tracing 
the physical sources of instability, transient time-dependent solutions are needed. Hyun 
et al. (40,41) developed such solutions by tracing and analyzing kinematic traveling 
waves on the spinline from the spinneret to the take-up. Their simulation shows good 
agreement with the experiments (28). 
 



 
 

Fig. 14.12 Results of the linearized stability analysis for a White–Metzner-type fluid, indicating 
the dependence of the critical draw ratio on n and N. [Reprinted by permission from R. J. Fisher 
and M. M. Denn, ‘‘A Theory of Isothermal Melt Spinning and Draw Resonance,’’ AIChE J., 22, 

236 (1976).] 



14.2 FILM BLOWING 

Most films and bags, in sizes varying from a sandwich bag to large films 
covering building sites, are made by the ingenious and deceptively simple process of 
film blowing. This process is shown schematically in Fig. 14.13(a), and a photograph of 
the process is shown in Fig. 14.13(b). A relatively small diameter tubular film is 
extruded upwards; upon exit it is blown up, with air introduced below the die, into a 
larger tubular film and then picked up by a pair of nip rolls that seal the bubble. An 
external stream of chilled air cools and solidifies the film at a certain upstream location 
called the freeze line, where Tf - Tm. In this process the film is stretched biaxially, 
thereby improving its mechanical properties. The blow up ratio, Rf / R0, determined by 
the pressure level within the bubble, sets the (tangential) circumferential stretching, and 
the speed of take-up by the nip rolls sets the axial stretching. 

The film thickness produced by film blowing ranges from 10 µm to 100 µm and 
the rates of production are very high. The most common plastic films produced by this 
method are branched LDPE, linear low density polyethylene (LLDPE), and linear HDPE 
films. By using more than one extruder, multilayer films can also be manufactured. To 
appreciate the elegant engineering simplicity of this process, we have to compare it to 
the more complicated and expensive die forming flat film process, where the melt is 
extruded through a slit die onto chilled take-up rolls. The latter process, while more 
expensive, has the advantage of producing optically clear films, because of the profuse 
nucleation induced by the quenching abilities of the chilled rolls. Yet, as the 
mathematical analysis discussed below demonstrates, the film blowing process is not 
simple at all, particularly when we consider the multiplicity of steady states and bubble 
instabilities that may arise which, in addition to cooling rates, place upper limits on 
production rates. 

 

 
Fig. 14.13 (a) Schematic representation of the tubular blown film forming operation. (b) 

Photograph of a coextruded blown film die followed by blown film with external and internal 
cooling. [Courtesy of Windmoeller & Hoelscher (Lincoln RI).] 

 

The first milestone in modeling the process is credited to Pearson and Petrie 
(42–44), who laid the mathematical foundation of the thin-film, steady-state, isothermal 
Newtonian analysis presented below. Petrie (45) simulated the process using either a 
Newtonian fluid model or an elastic solid model; in the Newtonian case, he inserted the 
temperature profile obtained experimentally by Ast (46), who was the first to deal with 
nonisothermal effects solve the energy equation to account for the temperature-



dependent viscosity. Petrie (47) and Pearson (48) provide reviews of these early 
stages of mathematical foundation for the analysis of film blowing. 

Han and Park (49–51) used a coupled force and thermal energy balances to 
take care of the nonisothermal nature of the process and accounted for the non-
Newtonian nature of the viscosity. Gupta (52) presented experimental results that were 
used by several investigators. Kanai and White (53, 54) carried out detailed 
experimentation as well as theoretical analysis of both the kinematics and the 
dynamics of the process and the effect of the cooling rate on crystallization. Heat 
transfer and bubble cooling were studied by Sidiropoulos and Vlachopoulos (55–58), 
who used numerical simulation to study air flow around the bubble, investigated the 
effect of internal bubble cooling, and studied the temperature gradient in the blown film. 
Finally, Campbell et al. (59) carried out a full aerodynamic analysis of the cooling air 
around the bubble. 

The early attempts to account for the viscoelastic nature of the fluid 
encountered mathematical difficulties in the numerical solutions. Yet later, Luo and 
Tanner (60) expanded the Petrie model to viscoelastic nonisothermal flow using the 
convected Maxwell and Leonov (61) models, and compared results to experiments 
done by Gupta (52). Cain and Denn (62) carried out a detailed analysis of both 
Newtonian and viscoelastic fluids. For the latter, they used the upper convected 
Maxwell model and the Marruci (63) model. They found that multiple solutions of the 
governing equations are possible even for the Newtonian fluid, with the existence of 
more than one steady state bubble profile for a given set of operating conditions. 
Furthermore, they found several types of instabilities. A recent, detailed review of film 
blowing instabilities is given by Jung and Hyun (28). 

Following the principles of the Petrie model, and recalling that the film thickness 

δ is much smaller than the radius δ / R << 1, we invoke the ‘‘thin-film approximation,’’ 
which implies that field equations are averaged over the thickness and that there are 
no shear stresses and moments in the film. The film is regarded, in fact, as a thin shell 
in tension, which is supported by the longitudinal force Fz in the bubble and by the 

pressure difference between the inner and outer surfaces, ∆P. We further assume 
steady state, a clearly defined sharp freeze line above which no more deformation 
takes place and an axisymmetric bubble. Bubble properties can therefore be expressed 
in terms of a single independent spatial variable, the (upward) axial position from the 
die exit,² z. The object of the analysis is to predict the dependent variables, including 
the bubble radius, film thickness, film temperature (in the nonisothermal case), and 
local values of stresses as a function of the axial distance, z. 

We first derive the kinematics of the deformation. The flow situation is shown in 
Fig. 14.14. Coordinate z is the vertical distance in the center of the axisymmetric 
bubble with the film emerging from the die at z - 0. The radius of the bubble R and its 

thickness δ are a function of z. We chose a coordinate system ξι embedded in the 
inner surface of the bubble. We discussed extensional flows in Section 3.1 where we 
defined the velocity field of extensional flows as 
 

 
 
 
 
 
 
 
 
 
 
 
 
__________________________ 
 

2. To be exact, the origin of variable z is located not at the die exit, but just past the die-exit swell region (21).



 
Fig. 14.14 The melt exits the die at z - 0; the radius of the bubble R and the thickness δ are a 

function of z. The coordinate system ξι  is embedded into the inner surface of the bubble. 

 
In this case, as pointed out earlier, the extension is planar, but unequal in 

directions ξ1 and ξ3. In order to derive the rate of deformation tensor components, we 

need to define the flow field in terms of the dependent variables δ and R. We note that 

in direction ‘‘2’’ at ξ2 − δ, we can write 
 

 
 

Writing a2 in terms of δ, from the kinematics of extensional flow, we have 
 

 
 

We can rewrite Eq. 14.2-3 as follows 
 

 
 

where 
 

 
 

And from geometrical considerations, we find that 
 

 
 
 

Substituting Eqs, 14.2-6 and 14.2-5 into Eq. 14.2-4, we get 
 

 
 



The volumetric flow rate Q is given by 
 

 
 
Substituting it into Eq. 14.2-7, we obtain 
 

 
 

The film circumference at any given z where the bubble radius is R, is l − 2πR, 
and the velocity v3 is given by 
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